
 3

Power Analysis and Fault
Attacks against Secure CAN:
How Safe Are Your Keys?

Colin O’Flynn, NewAE Technology Inc.

Greg d’Eon, NewAE Technology Inc.

Abstract
Designers of automotive systems find themselves pulled in an impossible number of directions.
Systems must use the most advanced security features, but at the same time run on low-cost
and resource-constrained hardware. Ultimately, an engineering trade-off will eventually be made
regarding how encryption and key management is used on these systems, potentially leaving them
vulnerable to attack.

In this paper, we detail the applicability of side-channel power analysis and fault injection on
automotive electronic systems, showing how these dangerous techniques can be used to break
an otherwise secure system. We build a small example network using AES-CCM to implement an
encrypted, authenticated CAN protocol. We demonstrate how open-source hardware and software
can easily recover the encryption keys from some of these nodes with side-channel power analysis,
and we recover a full firmware image from one device with a fault-injection attack using the same
tools. We also discuss how these attacks can be improved to bypass some common countermeasures
and be applied against devices in the real world, bypassing security on in-vehicle communication
or over-the-air firmware updates.

With these demonstrations in mind, we emphasize the importance of using strong encryption
and authentication keys with proper key management and distribution methods. We discuss methods
for mitigating these side-channel and fault attacks, and we use these methods to provide guidelines
for creating a system architecture that is secure against these hardware attacks.

History
Received: 02 Aug 2017
Revised: 10 Oct 2017
Accepted: 29 Nov 2017
e-Available: 14 Feb 2018

Citation
O’Flynn, C. and d’Eon, G.,
“Power Analysis and Fault
Attacks against Secure CAN:
How Safe Are Your Keys?,”
SAE Int. J. Transp. Cyber.
& Privacy 1(1):3–17, 2018,
doi:10.4271/11-01-01-0001.

ISSN: 2572-1046
e-ISSN: 2572-1054

ARTICLE INFO
Article ID: 11-01-01-0001
Published: 09 Mar 2018
Copyright © 2018
SAE International
doi:10.4271/11-01-01-0001

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

4 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018

Introduction

The growing complexity of automotive systems is putting a large amount of pressure
on their designers. The industry constantly pushes to add new features for comfort,
entertainment, and safety, requiring a single vehicle to use an increasing number

of communicating electronic devices. Embedded devices with safety-critical roles are
often connected to a vehicle's CAN bus alongside customer-connected modules such as
the entertainment system [1]. Attackers have managed to abuse these complex networks,
allowing them to break into or remotely control vehicles [1, 2]. Now, there is a research
effort to develop encrypted in-vehicle communication to mitigate these flaws, but no
standards are in wide use within production vehicles.

Additionally, some of the automotive electronics in use require firmware updates
after leaving the factory. Over-the-air (OTA) updates have become possible with
internet-connected systems, but these update methods can reveal more vulnerabilities.
Manufacturers would like to stop customers from loading their own firmware into a car's
systems to avoid issues with counterfeit parts, regulatory problems, and safety issues.
Additionally, the official firmware image may include secret communication keys and
algorithms that should not be revealed to attackers. To this end, most OTA firmware
updates will be encrypted and signed by the manufacturer to ensure that only legitimate
updates can be loaded onto the system.

This paper investigates encrypted and authenticated in-vehicle communication proto-
cols, showing how they are vulnerable to side-channel power analysis and fault injection
attacks. To demonstrate these security flaws, an example CAN bus with an AES-CCM
protocol is set up between three embedded devices. Then, two possible attacks are demon-
strated: a side-channel attack is used to recover encryption keys, and a fault injection
attack successfully dumps a device's complete firmware. Finally, several countermeasures
are discussed, and recommendations are made to help engineers prevent these attacks.

Background
This paper will focus mainly on in-vehicle attacks, where an attacker has some access to
some or all nodes on a given network. Such an attacker may have a variety of objectives,
but the typical cryptographic methods used in stopping the attacks are often similar.

The variety of nodes is important: an attacker may be able to break a critical node
using an attack on a less critical node. For instance, if poor key provisioning is used,
attacking a lighting or infotainment module could provide an attacker with secrets that
provide access to the main ECU, allowing them to find additional security vulnerabilities
or modify engine parameters.

Symmetric cryptography is often used in secure networks and for firmware encryp-
tion. Firmware signing would normally use asymmetric cryptography. While there are
some power analysis attacks possible against asymmetric cryptography, the fact that
the private signing key is not stored on the target device makes power analysis against
asymmetric cryptography less valuable. Bypassing signature verification steps with fault
attacks is more commonly used when breaking asymmetric cryptography

Secure CAN
The most popular communication system in automobiles today is the CAN bus, which
allows many devices to send and receive messages using a single 2-wire line [3]. This
protocol allows commands and data to be sent up to 1 Mbit/s, but is still simple enough
for inexpensive low-power microcontrollers to use. However, the CAN standard does not
contain any significant level of security. All messages sent on a CAN bus are easily readable,
and there is no form of authentication to confirm the identity of a message's sender.

There are two components that would improve the security level of the CAN protocol.
First, the messages could be encrypted before they are sent on the CAN bus. Encrypting

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018 5

the CAN messages obfuscates traffic on the CAN bus, which may complicate reverse
engineering of the messages, helping prevent in-vehicle attacks [4]. Second, authentica-
tion tags could be sent with each message. These tags are calculated by performing a
cryptographic signing algorithm with the message and a secret authentication key. Then,
any node knowing the secret key can confirm that the message was sent by a privileged
device with the key, stopping attackers from injecting their own messages.

Firmware Updates
Manufacturers have several things at stake in their vehicles' firmware. One issue is that
the firmware often contains several important secrets: it may have cryptographic keys
or algorithms embedded in the source code. Additionally, manufacturers want to ensure
that they have control over the firmware running on their vehicles. If end users could
freely reprogram an ECU, they could adjust the car's tuning parameters, disable critical
safety features, or destroy important data logs.

Currently deployed automotive devices provide various levels of security for their
firmware update procedure. For instance, the Unified Diagnostic Services (UDS) protocol
involves an authentication step: the vehicle generates a seed, and the programmer is to
perform some secret operation on the seed, calculating a key that unlocks the secu-
rity-critical components [5]. This type of challenge-response system can sometimes be
reverse-engineered or bypassed by abusing other programming features, such as a JTAG
interface. Other vehicles are beginning to use over-the-air (OTA) firmware updates;
bypassing security checks on OTA updates could allow firmware to be adjusted without
physical access to the vehicle. Mitigating these security issues requires firmware signing
techniques using well-known cryptographic standards.

Key Distribution
In symmetric cryptography, a shared secret key is required both for encryption and
authentication, and safely distributing this key is a critical aspect of any secure system.
There is a spectrum of solutions to the key distribution problem. The simplest method
of key distribution is to use a single fixed key for all devices, allowing the OEM to pre-
program this secret into each device. This ensures all nodes on a network can easily
send messages to each other, but an outside attacker cannot. However, this method of
key sharing is risky—if the key is revealed, the entire network is compromised. On the
other end, the most robust method is to allow the devices to generate random secrets
for each communication link and securely share these keys with other devices on the
network. This approach is safer, but generating and distributing keys on a low-resource
embedded device can be difficult and slow. Recently, CAN-specific key distribution has
also been proposed taking into account these limitations [4].

An automotive environment provides some unique security challenges. It is typical
for nodes on a CAN bus to have greatly different levels of processing power: the central
ECU in a car will likely have more resources than a door control unit. An attacker can
use these asymmetric security levels to their advantage. If a single key is used for the
entire network, finding the key on the weakest node is enough to compromise the entire
vehicle's security. This paper demonstrates how easily these keys can be leaked, showing
the necessity of a proper key management and distribution system.

Example CAN
This section describes an example network using several different devices running a
modified CAN protocol with encryption and authentication. Note that this protocol is
not the focus of this paper, and a basic protocol was only used to have a concrete example
without disparaging a specific existing secure CAN protocol. Trade-offs made in this
example protocol (such as the maximum input message size, and small MAC size) will

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

6 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018

not be discussed. Instead, we wish to focus on fundamental
weaknesses which are applicable among almost all secure
networking proposals. This includes both secure CAN, and
similar networking protocols such as CAN-FD or Ethernet.
An example of the applicability of these attacks to other
protocols can be seen when fault attacks are introduced,
where the same type of attack which we demonstrate on a
CAN network is performed on a USB device [6].

Physical Network
The network is designed to demonstrate a mix of full-feature
(such as a gateway device) and low-cost (such as an end device)
nodes. Three different devices are present: a gateway using a
NXP MPC5748G, an end-node using a ST STM32F415, and
an end-node using an Atmel AT90CAN128. The devices have
a variety of hardware features: the MPC5748G is a Triple-
Core PowerPC device with a Hardware Security Module
(HSM) including hardware AES. The STM32F415 is a single-
core ARM Cortex M4 microcontroller with hardware AES.

Finally, the AT90CAN128 is a low-cost device without any hardware accelerated crypto-
graphic protocols. These devices are all connected on a single physical CAN bus, where
messages are sent back and forth between them. The devices are on commercially available
development boards that are instrumented to simplify measuring of side-channel power
analysis leakage, but the attacks to be discussed can easily be performed on OEM hardware.
Several of the development boards are manufactured by NewAE Technology Inc., and are
part of the ChipWhisperer project. The physical network is shown in Figure 1.

In addition to the expected nodes, one of the devices has a ChipWhisperer Capture
CW1200 connected which is used for power analysis and fault attacks, and another node
has the ChipWhisperer-Lite for power analysis attacks. The ChipWhisperer-Lite is specifi-
cally included due to its completely open-source nature (including PCB files, FPGA design,
firmware, computer software, documentation) making it a useful device for academic
research and teaching purposes. Under normal operating conditions, these measure-
ment devices would not be present. Finally, a PEAK PCAN-USB is used as a computer
interface for monitoring the network, and can also be used in injecting packets. While
specific hardware is used for demonstration purposes here, the attacks discussed in this
paper are not specific to any given measurement or control hardware—for example, the
power analysis attacks in this paper can be applied with general-purpose oscilloscopes.

 Encrypted and Authenticated CAN
Protocol
The devices in this network communicate with a modified CAN protocol. This protocol
uses AES-CCM to encrypt the input data and produce a MAC tag for authentication.
A block diagram of the encryption and authentication process is shown in Figure 2.
The use of AES-CCM in this protocol has the advantage of only requiring a single
AES-ECB encryption primitive, remaining relatively fast and lightweight. Full details
of the message format are given in Appendix A.

Additionally, one common problem with securing CAN is that the CAN bus is
limited to a data frame size of 8 bytes. Rather than using CAN-FD or ISO 15765-2 as
previous work has done, this protocol uses the ability of AES-CTR to encrypt a frame
smaller than 16 bytes. It also uses the extended addressing bits of CAN 2.0B mode as
a frame counter, incrementing this value for each message. These bits are used in the
nonce for the AES-CTR input and the MAC tag calculation to prevent replay attacks.
The receiving node must validate the nonce to confirm it is unique, and the secret keys
must be changed once this frame counter (“msg #”) rolls over.

 FIGURE 1  An example network includes a low-end node
(AT90CAN128, left), medium-performance node (STM32F415,
middle), 32-bit triple core PowerPC gateway device (MPC5748G,
right), and a computer interface. For power analysis and glitch
insertion various parts of the ChipWhisperer platform are shown
attached to the nodes.

©
 S

A
E

In
te

rn
at

io
na

l

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018 7

Despite the high level of cryptographic security in this
system, the following section will show how certain nodes
can be trivially compromised given physical access to the
hardware. These demonstrations will even assume that the
system is otherwise secure —that there are no other flaws in
the firmware or hardware.

Side Channel Power
Analysis
Side channel power analysis is a method of breaking other-
wise secure cryptographic algorithms implemented on
physical devices. This field is often referred to by the name
of the original technique, Differential Power Analysis (DPA),
proposed by Kocher et al. [7]. This work uses a more recent
technique called Correlation Power Analysis (CPA) [8]. Both
DPA and CPA rely on the fact the power consumption of a
digital device on specific clock cycles has some dependence
on the actual data being transferred on the internal data bus.
For many microcontrollers, this specifically results from the
fact the internal data-bus lines are first set to a pre-charge
state before every new piece of data transferred on the data
bus. The amount of power required to set the data-bus from
the pre-charge state to the final state will depend on the
number of bits set to “1” on the data bus, typically referred to
as a “Hamming Weight” (HW) leakage model. This leakage
model can be used to break software implementations of
cryptographic functions, since we can learn a small amount
of information about internal states of the algorithm. Based
on the known input (or output) of the algorithm, we can determine the secret key
information a single byte at a time, since we can determine what value the secret key
must take to make the observed Hamming weight measurement valid. A comprehensive
discussion of these attacks is given in [9].

Taking a specific example, this attack is possible on everything from small 8-bit
microcontrollers [8] up to full computer systems [10, 11]. This attack can be performed
with low-cost hardware such as the open-source ChipWhisperer [12] which can be built
for approximately $200 USD (see documentation and link to source code held on GITHub
at ChipWhisperer.com), and is applicable to real products. Example of products broken
with it include recovering the secret key used to sign and encrypt over-the-air firmware
update images for the Philips Hue lights [13], recovering the secret key in the Yubikey
2 [14], recovering encryption keys used for bitstream protection on Xilinx [15], Altera
[16], and Microsemi FPGAs [17], and breaking key fobs using the Keeloq algorithm [18].

CPA Attacks on AES-128
With side-channel power analysis, it is straightforward to break an AES encryption key.
In a CPA attack, each byte of the key is recovered by considering all possible values {0x00,
0x01, ..., 0xFF} of each byte. For each possible value, the correlation is calculated between an
intermediate encryption state and a number of power traces recorded with known inputs
(either plaintext or ciphertext). Then, at one point in time, the hypothetical intermediate
value of the encryption state will have a high correlation with the traces. To provide a specific
example, Figure 3a shows a power trace recorded from the STM32F415 device (as shown
in Figure 1). In this plot, the AES hardware encryption is happening between sample 360
and sample 500. Then, Figure 3b shows the calculated correlation at each point in time for

 FIGURE 2  A modified CAN protocol using AES-CCM to
provide both encryption and authentication. The input data is
limited to 4 bytes long, and a 4-byte message authentication
code (MAC) tag is appended. The extended ID field of the CAN
message is used to transmit the nonce. This message format is
described in detail in Appendix A.

©
 S

A
E

In
te

rn
at

io
na

l

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

http://ChipWhisperer.com

8 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018

all 256 guesses, with the correct value of the key byte highlighted
in red. This correlation peak would tell the attacker that this is
the correct guess. This attack uses a Hamming distance leakage
model targeting the difference between the 9th and 10th round
states (as in [13]).

The nodes on our CAN bus have a variety of
AES implementations—the smallest device is using a
software implementation, whereas the other two are using
hardware implementations. We attempted CPA attacks on
the three devices to provide approximate information on
leakage characteristics of the various devices. Table 1 summa-
rizes these results, including the number of “traces” (that is,
encryption operations to be observed) to recover the secret
key. Note the wide range—the software implementation
on the AT90CAN128 takes only 40 traces, the STM32F415
takes 1900 traces, and the MPC5748G device was not able
to be broken with a CPA attack using up to 200 000 traces.
The 200 000 upper limit was chosen as was approximately
the maximum number of traces expected to be allowed with
the same encryption key (see Appendix A). This analysis was
a basic CPA attack, so it is not claimed the device actually
contains specific countermeasures. A more complete analysis
is required to understand the security level of this device
before making decisions about the number of encryptions one
should allow before changing the encryption key.

Extension to Secured CAN Protocol
The proposed secured CAN bus is using AES-CCM (CTR with CBC MAC) mode.
This slightly complicates the power analysis attack, as the attacker no longer has the
exact input to the AES algorithm. However, it is still possible to attack either of the two
encryption blocks. In Figure 2, the input to the actual AES-ECB algorithm is the nonce
and counter value. The output of the AES-ECB algorithm is XORed with the plaintext
in performing the AES-CTR encryption. A basic side-channel power analysis attack is
recovering the key based on the input to the AES-ECB algorithm, so instead the attacker
can perform a power analysis attack of later rounds of AES, as described in [19]. This
technique was previously practically demonstrated in [20], and in the specific case of
AES-CCM there is a shortcut due to the key reuse between the CTR and CBC modes
described in [12].

To perform this attack in the real world, the attacker needs to be able to monitor a
number of encryptions with varying inputs, where the approximate number of encryp-
tions for breaking the AES key is given in Table 1. The attacker does not need to control
these inputs (plaintexts and message IDs) as long as they change. Some real devices
always decrypt all received messages, discarding them once realizing they are invalid
after decryption. If this is the case, an attacker can simply send arbitrary messages to
the target—it is irrelevant that the messages are ignored, as long as they are decrypted.
Other devices might first authenticate a message before decrypting. Here, the attacker

will need to first break the authentication algorithm
or monitor valid messages sent to the target device
from within the network.

Finally, the attacker may not always need to
recover both of the secret keys: the encryption key
is all that is needed to view the unencrypted content
of the messages. The authentication key might only
need to be broken if an attacker wants to inject their
own malicious messages onto the network.

TABLE 1 The number of traces required to recover the secret key from
each device running AES-128 on each device. Note that the key was not
recovered from the MPC5748G after 200 000 traces.

Device Leakage Model Traces
AT90CAN128 HW: Round 1 SubBytes Output 40

STM32F415 HD: Final Round State to Ciphertext 1 900

MPC5748G Unknown (not broken) > 200 000

 FIGURE 3  The top trace at (a) shows the power
consumption during a hardware AES encryption on the
STM32F415. The bottom trace (b) shows a correlation of every
wrong key-guess (in light green) compared to the correct
key-guess (in dark red) for each point in the power trace.

©
 S

A
E

In
te

rn
at

io
na

l

©
 S

A
E

In
te

rn
at

io
na

l

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018 9

Use of H-Field Probe
While all the test boards in Figure 1 have been modified to include resistive
shunts to simplify power measurement, it is well known that a non-contact
electromagnetic (EM) probe can also be used. The EM probe is typically
designed for sensing the magnetic field (H-Field), and suitable probes are
widely available from commercial suppliers as they are used in EM emis-
sions testing. When using a H-Field probe, the probe is simply held above
the target chip as in Figure 4. The changing current consumption generates
a changing magnetic field, and this field is picked up by the probe, amplified,
and sent to the same measurement/capture equipment. The effectiveness of
the attacks is on the same order of magnitude between the EM probe and
the physical shunt measurement [21].

Fault Attacks
Fault (or “glitch”) attacks are used to cause a device to perform unintended
operations. In a fault attack, the system is brought outside of its regular oper-
ating conditions for a short amount of time. These faults could include short pulses into
the clock signal, violating setup and hold times and causing instructions to be executed
incorrectly. They could also include voltage fault injection, where the internal core's voltage
supply is changed momentarily. Previous work has shown that causing ringing on the
internal power network of the target chip is one of the mechanisms which causes effective
fault injections [22].

While both clock and voltage glitching offer surprisingly selective fault effects (being
able to cause errors in a single instruction even), more granularity may be needed on
advanced targets. For these targets, either electromagnetic or optical glitching would
be preferred, as this glitching mechanism can target specific areas of the chip surface
using a X-Y table to mechanically change the glitch location. Both of these methods have
proven effective against a variety of advanced targets [23, 24], and low-cost solutions
have been presented for both types of glitching [25, 26].

Fault attacks have the potential to be more powerful than side-channel analysis.
Rather than recovering specific secret values within a device, fault attacks allow us to
entirely bypass or modify certain operations. For example, to attack a device with signed
firmware images, fault injection can cause the target to skip the signature check, making
it load an unsigned image. This type of attack allows a malicious firmware image to be
loaded onto the device, opening up additional attacks, including recovering secrets
stored within the device memory.

One particularly weak point in many embedded devices is in their communication
systems. One common code structure is to use a loop to transmit one byte at a time over
an interface such as CAN or UART. With fault injection, the counter in this loop can be
corrupted, causing the code to miss the exit condition and continue sending much more
data than intended. Such an attack was demonstrated on a practical platform by Micah
Scott, who successfully used a fault attack against a USB device causing it to dump the entire
memory contents over the USB port1 [6]. Of particular interest was the fact this fault glitched
a higher-level communication loop—the memory was dumped in valid USB packets that
respected the maximum memory size and waited for appropriate acknowledgment signals.

Example of Fault Attacks on STM32F415
We performed a fault attack against the STM32F415 target node as a demonstration of
how an attacker could recover code memory from an otherwise secure device. The target
of this fault is a CAN communication loop, as in the previous description. Both code

 FIGURE 4  A magnetic-field probe can
be used to measure the power consumption
of a target device, and has roughly the same
effectiveness as the shunt resistor without
requiring any modifications to the target.

©
 S

A
E

In
te

rn
at

io
na

l

1In addition to the referenced paper, Scott has a detailed video of this attack at https://www.youtube.com/
watch?v=TeCQatNcF20

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

https://www.youtube.com/watch?v=TeCQatNcF20
https://www.youtube.com/watch?v=TeCQatNcF20

10 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018

and data memory are present in the same memory space on the
STM32F415 (as on other ARM devices), and depending on the
location of the data being printed to the communications inter-
face may result in data and/or code memory being dumped.

We used a crowbar voltage injection attack to achieve our
effective fault [27]. This crowbar circuitry simply shorts the power
rail of the device for a short amount of time with a MOSFET,
as in Figure 5a. The resulting waveform on the internal core
voltage pin of the STM32F415 is shown in Figure 5b. This glitch
was timed to occur shortly after the beginning of the message,
which indicates that the communication loop is running. Then,
the ChipWhisperer software was used to automatically search
for a precise glitch length and timing that caused the memory
to be dumped. In practice, an attacker could run this automatic
search over a long period of time, so it is likely that they could
find a successful fault.

Fault Attack and SCA
Combinations
Fault attacks have a wide variety of use-cases, and may often
be combined creatively with side-channel attacks (SCA). For
example, one common security measure is to use a key deriva-
tion function (KDF) with a single master key. A KDF allows a
device to generate ephemeral keys without revealing the master
key, giving it the ability to change keys during operation.
Typically, it would be complicated to perform a side-channel
attack on a KDF, as it is difficult to predict when the KDF
will run. However, with fault injection, it may be possible to

recover the device's code memory including the master key. Furthermore, an advanced
device with secure write-only key storage may also be vulnerable to a combined attack:
by loading custom firmware, an attacker could trigger a key derivation function many
times, allowing a side-channel attack to succeed.

Another example of a combination attack was recently presented by Veredas et al.
[24]. There, power analysis was used to determine the location in time that a JTAG
lock bit was set in a microcontroller, and an EM fault injection attack was used to
prevent the correct value of this bit from being read. This left the device operational
but with an unlocked JTAG port, allowing an attacker access to the internal memory
of the device.

Where SCA attacks may have a specific target, such as a secret key or password, fault
attacks have a more varied range of effects, and it is difficult to predict an attacker's path.
For instance, fault attacks on a JTAG password may first be demonstrated with high-end
equipment, but without additional experimentation it is unknown what the ability of an
attacker armed with only a low-cost device would be capable of. While safety-critical
design practices greatly complicate a fault injection attack, they are not a guaranteed
preventative measure (as demonstrated in [24]).

Countermeasures
 Software/Hardware Cryptography
Implementations
Several countermeasures have been proposed to stop side-channel attacks. One
common countermeasure is to add random delays before or during the cryptographic
algorithm, but these delays are almost never effective. Recall from Figure 3a that

 FIGURE 5  A simple MOSFET circuit in (a) pulls down the
core power voltage. The resulting waveform in (b) causes a
fault in the STM32F415, resulting in a memory dump.

©
 S

A
E

In
te

rn
at

io
na

l

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018 11

the encryption operation has a visible power signature—it is visually obvious when
the encryption is happening, and it is simple to realign a set of traces to remove
these delays [28]. In addition, many oscilloscopes are capable of triggering based on
patterns in the analog data, such as the Sum of Absolute Difference (SAD) trigger
in the ChipWhisperer project [12]. More robust signal processing techniques, such
as Dynamic Time-Warping [28], can also handle complex delays at any point in the
algorithm. Another countermeasure is to enable additional hardware peripherals to
increase the amount of noise on the power rails; this increased noise level only increases
the number of traces required for the key recovery to succeed, and it is rarely enough
protection to prevent a side-channel attack.

In general, software implementations of cryptographic functions tend to be routinely
broken, despite many proposed countermeasures to power analysis. As a high-profile
example, the DPA Contest V4.22 presented an AES implementation including random
masking of plaintexts and shuffled operations [29]. Despite these efforts, 10 different
research groups recovered the secret key, with several of the attacks requiring only a
single encryption trace to recover the key. It should now be clear that software encryp-
tion cannot easily be protected against SCA.

In hardware, there are a few more methods that can be used to prevent these attacks.
First, a dedicated cryptography peripheral can be set up to calculate an entire round
in parallel. Note from Table 1 the STM32F415 hardware peripheral takes considerably
more traces than a software implementation3. This alone is unlikely to be sufficiently
difficult, as an attacker is likely able to cause several thousand encryption operations in
a short time. To further improve results, some additional hardware features can make
SCA difficult. One example is Masked Dual-rail Precharge Logic [30], which attempts
to make the overall power consumption constant regardless of the input data. Through
careful design, it is possible to create a device that is difficult to break with SCA. To this
end, there is a growing movement for standardized security tests of encryption modules
(such as ISO/IEC 17825), which would give engineers the ability to make intelligent
designs preventing key leakage through side-channel attacks.

These countermeasures increase the difficulty of a SCA to succeed by requiring
more traces. This can be used in combination with the system architecture to provide
security—if a device can be broken with 500 000 traces (encryption operations), but
the secret key is guaranteed to be changed after 10 000 uses, the SCA attack is of little
practical use.

Security through Architecture
Automotive systems require a variety of devices with different levels of complexity, and
it would be prohibitively expensive to protect every single one from hardware attacks.
Instead, the best form of protection is to design a key distribution architecture that
protects the most critical components of the vehicle.

To ensure a high level of hardware security, an automotive system requires two
main design considerations. First, the safety-critical devices must be safe against the
attacks demonstrated in this paper. Care should be taken to select processors that have
strong countermeasures against SCA, and these electronics should include anti-tamper
features to prevent (or at least detect) these other types of invasive attacks. Second, the
keys used in these secure communication links must be strong and unique. This require-
ment means that at minimum each vehicle should have its own OEM-generated key,
and knowledge of the vehicle's VIN should not be enough to recover the key. Further
segregations of the CAN bus should mean different groups also have unique keys. This
way, if an end node has its firmware leaked or its keys are recovered with SCA, the critical
components of the vehicle remain safe. Using asymmetric cryptography is one method
of enforcing this security: each node has a separate key, so leaking an end node’s keys
does not compromise the entire system. Using separate keys for each node in a CAN

2See http://www.dpacontest.org/v4/
3Software AES on the STM32F415 can be broken in around 40 traces, similar to the AT90CAN128 software.

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

http://www.dpacontest.org/v4

12 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018

bus may be too much work for small devices in these real-time systems. However, the
previous solution suggests that the safety-critical nodes must use relatively high-power
processors with strong cryptographic countermeasures. In this case, it should be possible
to offload most of the key-management work to gateway devices, which are powerful
enough to handle the extra work of tracking per-node keys. Recent work on methods
of distributing keys to end nodes aligns with this requirement [4].

If using instead a KDF with a per-vehicle key, this key could be generated by
combining a unique per-vehicle ID (such as the VIN) with some OEM secret known
to the OEM, allowing the manufacturer to quickly recalculate each vehicle's key. Also,
this OEM secret should vary over time to ensure that a leak of an old OEM secret does
not compromise newer models.

Asymmetric cryptography is of great value in avoiding issues with shared keys.
Typically asymmetric algorithms are too slow for use in real-time encryption/decryption
on communication links, but are helpful for both key distribution, and verification or
transfer of critical data blocks (e.g., firmware signing). Where asymmetric cryptography
can be used in such a way the private key is not stored on the vulnerable device (i.e.,
when performing signature verification) removes sensitive data that can be leaked via
side-channel or other means.

For embedded devices, ECC with Curve25519 has become a popular choice due
to patent-free status combined with excellent performance possible even on embedded
devices [31]. An excellent example of side-channel attack on Curve25519 implementations
is available in [32], which also includes references to other work of interest.

Conclusions
This paper has presented a cryptographically secure CAN protocol and shown how it can
be trivially broken using side-channel power analysis and fault injection. Open-source
tools were used to recover secret encryption keys and full firmware images on a variety
of hardware platforms, and the full extent of these attacks in practice was discussed.

With these demonstrations in mind, future work on secure CAN standards should
focus on designing systems that are resilient against the effects of SCA and fault injection
to ensure a high level of vehicle safety. To achieve this safety, automotive system designers
must be aware of the challenges present in embedded security. These systems must be
designed to ensure that safety-critical devices are protected against hardware attacks,
and careful key management is central to ensuring that these protected components are
not left open to other vulnerabilities.

Definitions/Abbreviations
AES - Advanced encryption standard
CAN - Controller area network
CBC - Cipher block chaining
CCM - CTR Mode with CBC MAC
CPA - Correlation power analysis
CTR - Counter
DPA - Differential power analysis
ECB - Electronic code book
EM - Electromagnetic
H-Field - Magnetic field
HD - Hamming distance
HW - Hamming weight
KDF - Key derivation function
MAC - Message authentication code

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018 13

OEM - Original Equipment Manufacturer
OTA - Over-the-air
SCA - Side channel analysis

References
1. Miller, C. and Valasek, C., “Remote Exploitation of an Unaltered Passenger Vehicle,”

IOActive White Paper, 2015.
2. Greenberg, A., “Hackers Remotely Kill a Jeep on the Highway-With Me in It,” Wired 7:21, 2015.
3. International Organization for Standardization, “Road Vehicles-Controller Area Network

(ISO 11898),” 2015.
4. Jain, S. and Guajardo, J., “Physical Layer Group Key Agreement for Automotive Controller

Area Networks,” Workshop on Cryptographic Hardware and Embedded Systems (CHES),
Santa Barbara, 85-105, 2016.

5. International Organization for Standardization, “Road Vehicles-Unified Diagnostic
Services (ISO 14229),” 2013.

6. Scott, M., “The Face Whisperer for USB Glitching,” PoC||GTFO 13:30-37, 2016.
7. Kocher, P., Jaffe, J., and Jun, B., “Differential Power Analysis,” Proceedings of the 19th

Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara,
388-397, 1999.

8. Brier, E., Clavier, C., and Olivier, F., “Correlation Power Analysis with a Leakage Model,”
Proceedings of Workshop on Cryptographic Hardware and Embedded Systems (CHES), Boston,
16-29, 2004.

9. Oswald, E., Mangard, S., and Popp, T., Power Analysis Attacks: Revealing the Secrets of
Smart Cards, (New York: Springer, 2007). ISBN 978-0-387-30857-9.

10. Genkin, D., Pipman, I., and Tromer, E., “Get Your Hands Off My Laptop: Physical Side-
Channel Key-Extraction Attacks on PCs,” International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), Busan, Korea, 242-260, 2014.

11. Balasch, J., Gierlichs, B., Reparaz, O., and Verbauwhede, I., “DPA, Bitslicing and Masking
at 1 GHz,” Workshop on Cryptographic Hardware and Embedded Systems (CHES), Saint-
Malo, France, 599-619, 2015.

12. O’Flynn, C. and Zhizhang, C., “ChipWhisperer: An Open-Source Platform for Hardware
Embedded Security Research,” COSADE, Paris, France, 2014.

13. Ronen, E., O’Flynn, C., Shamir, A., and Weingarten, A.O., “IoT Goes Nuclear: Creating a
ZigBee Chain Reaction,” IEEE Symposium on Security and Privacy (SP), San Jose,
195-212, 2017.

14. Oswald, D., Richter, B., and Paar, C., “Side-Channel Attacks on the Yubikey 2 One-Time
Password Generator,” International Workshop on Recent Advances in Intrusion Detection
(RAID), St. Lucia, 204-222, 2013.

15. Moradi, A. and Schneider, T., “Improved Side-Channel Analysis Attacks on Xilinx
Bitstream Encryption of 5, 6, and 7 Series,” Workshop on Constructive Side-Channel
Analysis and Secure Design (COSADE), Graz, Austria, 71-87, 2016.

16. Moradi, A., Oswald, D., Paar, C., and Swierczynski, P., “Side-Channel Attacks on the
Bitstream Encryption Mechanism of Altera Stratix II: Facilitating Black-Box Analysis
Using Software Reverse-Engineering,” Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey, 91-100, 2013.

17. Skorobogatov, S. and Woods, C., “In the Blink of an Eye: There Goes Your AES Key,” 2012.
18. Paar, C., Eisenbarth, T., Kasper, M., Kasper, T. et al., “KeeLoq and Side-Channel Analysis-

Evolution of an Attack,” Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), Lausanne, Switzerland, 2009.

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

14 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018

19. Jaffe, J., “A First-Order DPA Attack against AES in Counter Mode with Unknown Initial
Counter,” Workshop on Cryptographic Hardware and Embedded Systems (CHES), Vienna,
Austria, 1-13, 2007.

20. National Institute of Advanced Industrial Science and Technology (AIST), “Power Analysis
Attacks on SASEBO,” 2010.

21. Agrawal, D., Rao, J., and Rohatgi, P., “Multi-Channel Attacks,” Workshop on Cryptographic
Hardware and Embedded Systems (CHES), Cologne, Germany, 2003.

22. Zussa, L., Dutertre, J.M., Clediere, J., and Robisson, B., “Analysis of the Fault Injection
Mechanism Related to Negative and Positive Power Supply Glitches Using an On-Chip
Voltmeter,” Symposium on Hardware-Oriented Security and Trust (HOST), Arlington, 2014.

23. Carpi, R., Picek, S., Batina, L., Menarini, F. et al., “Glitch It If You Can: Parameter Search
Strategies for Successful Fault Injection,” Smart Card Research and Advanced Applications
(CARDIS), Paris, France, 2014.

24. Veredas, R.P. and Wiersma, N., “Safety != Security. A Security Assessment of State of the
Art ASIL-D Certified Microcontrollers,” ESCAR, Detroit, 2017.

25. Guillen, O., Gruber, M., and De Santis, F., “Low-Cost Setup for Localized Semi-Invasive
Optical Fault Injection Attacks—How Low Can We Go?” Workshop on Constructive Side-
Channel Analysis and Secure Design (COSADE), Graz, Austria, 2017.

26. Cui, A. and Housley, R., “BADFET: Defeating Modern Secure Boot Using Second-Order
Pulsed Electromagnetic Fault Injection,” USENIX Workshop on Offensive Technology
(WOOT), Vancouver, Canada, 2017.

27. O’Flynn, C., “Fault Injection Using Crowbars on Embedded Systems,” IACR E-Print, 2016.
28. van Woudenberg, J.J., Witteman, M., and Bakker, B., “Improving Differential Power

Analysis by Elastic Alignment,” Topics in Cryptology-CT-RSA, San Francisco, 2011.
29. Bhasin, S., Bruneau, N., Danger, J.L., Guilley, S. et al., “Analysis and Improvements

of the DPA Contest v4 Implementation,” Conference on Security, Privacy, and Applied
Cryptography Engineering (SPACE), Pune, India, 2014.

30. Popp, T. and Mangard, S., “Masked Dual-Rail Pre-Charge Logic: DPA-Resistance without
Routing Constraints,” Workshop on Cryptographic Hardware and Embedded Systems
(CHES), Edinburgh, Scotland, 2005.

31. Bernstein, D.J., “Curve25519: New Diffie-Hellman Speed Records,” International
Conference on Theory and Practice of Public-Key Cryptography (PKC), New York, 207-228,
2006.

32. Genkin, D., Valenta, L., and Yarom, Y., “May the Fourth Be with You: A Microarchitectural
Side Channel Attack on Several Real-World Applications of Curve 25519,” ACM Conference
on Computer and Communications Security (CCS), Dallas, 2017.

33. O’Flynn, C. and Zhizhang, C., “Power Analysis Attacks against IEEE 802.15.4 Nodes,”
Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE), Paris,
France, 2016.

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018 15

Appendix A: Details of Secure CAN
Protocol
This appendix provides technical details of the secure CAN protocol, which is described
in Figure 2. Providing a secure communications link will require additional data to be
transferred beyond just the original payload. Since the standard CAN data payload is
limited to 8 bytes, adding security to an 8-byte data payload would require splitting the
message. To avoid this issue, the protocol here has a maximum user data payload size
of 4 bytes. The remaining 4 bytes available in the 8-byte CAN payload are reserved for
a Message Authentication Code (MAC), which allows the receiver to confirm a given
message was sent from the claimed node and has not been modified.

The encryption/authentication method is simply a slight modification of the
standard AES-CCM (see RFC 3610) encryption mode, which uses AES-CTR mode for
encryption and AES-CBC for authentication. The modification here is that (1) different
keys are supported for encryption and authentication, and (2) only a single block is ever
operated on due to the short message size, so the counter inputs to the AES-CTR mode
are fully fixed.

Our secure CAN block can be seen as taking as an input a given message which has
a standard 11-bit ID (with no extended ID), and four payload data bytes. This example
protocol may be limited in real-life use cases, but is designed primarily to demonstrate
aspects of a secure protocol without adding the complexity involved in using CAN-FD
or ISO 15765-2 to support longer messages. The secure CAN protocol transmits the
message on the CAN network in such a manner that the message is encrypted, and
someone spoofing the CAN network could not replay messages (i.e., they could not
record encrypted messages of a door unlock command and simply replay them as-is,
without breaking the encryption).

Providing replay protection requires some “message counter”. We hijack the
“extended ID” bits for this purpose, giving us an 18-bit counter. A transmitting node
simply increments this on every message sent, and the receiving node will verify for
every message that the counter has been incremented from the last valid received
message. The receiver MUST only update their internal state of what constitutes a
valid counter-ID after verifying the message came from an authentic source (i.e.,
MAC verification passes OK), as otherwise an attacker can perform a simple denial
of service attack on the CAN bus by sending messages with the message counter set
to the maximum value. Under normal operations the keys must change before that
counter overflows, as once the counter overflows the current keys can no longer be
used for communication. With an 18-bit counter this means 218 (262 144) messages
can be exchanged with a given key pair.

In addition to the message counter, a message authentication code (MAC) is used
such that the receiver can verify the message authenticity. The MAC code is 4 bytes
appended to the data payload. The MAC is dependent on the contents of the message
counter, message ID, data payload, and a secret “authentication key” known only to
authorized nodes on the network.

Tables A1 and A2 show the generation of the encrypted payload and MAC tag.
In this example the input message is DE AD BE EF (4 bytes), which is converted to
28 BF 24 96 95 A2 89 87 . The first four bytes are the encrypted payload, the next four
bytes are the MAC tag. This message must be transmitted with a standard message
ID of 0x2D0 (the original message ID), and with the extended ID bits set to 0x00456
(the message counter). In Table A2 a non-zero I.V. is used as a calculation example to
validate byte ordering, but if following NIST SP800-38C this should instead all 0’s if
a fixed value is used.

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

16 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018

Power Analysis Considerations
Power analysis against plain AES-ECB is used in the paper as a reference for the number
of traces required. Recovering all 16 bytes of the AES-128 encryption key requires us to
perform encryption (or decryption) operations, where we know or control all 16 bytes
of the input data. This data must be non-constant in order for us to perform a standard
CPA attack. When other modes are used (such as AES-CTR mode used here), most of
the input data is fixed (i.e., the nonce values are the input to the AES-ECB block). We
can still apply CPA attacks against other modes (such as the AES-CCM mode used here)
with some modifications. The direct application to AES-CTR mode was first described
in [19]. Due to the diffusion property of AES, the small changes of input text will result
in all bytes being recoverable at a later round of the AES algorithm. This does not even
require us to know the value of all constant bytes.

The paper in [19] was based on bytes 14-15 changing (as would happen in AES-CTR
when multiple blocks are encrypted). Our protocol instead has an ability to change the
frame counter bytes, which are mapped into bytes 0-2 of the AES-ECB input, so would
require a slight modification to how the attack is handled. Such modifications were
used in [13, 33].

In [13] a specific attack against AES-CCM was used, which works assuming the
AES-CCM authentication and encryption key are the same. A power analysis attack
against AES-CBC mode may be easier than AES-CTR mode, since the input data will
be fed more directly into the AES-ECB primitive for AES-CBC. This would allow an
attacker to perform power analysis on only the authentication operation, and recover the
encryption key also used for encryption. The secure CAN protocol used in this paper has
separate authentication and encryption keys to avoid this attack, requiring an attacker
to perform power analysis against both the encryption and authentication operations.

TABLE A1 This table shows the encryption of the payload portion of the CAN message
(all values in hex).

Original Message ID 2D0

Original Message Payload DE AD BE EF

Message Counter 00456

Kenc (use with AES-CTR) 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF
4F 3C

AES-CTR Nonce (AES-ECB Input) 00 04 56 02 D0 00 00 00 00 00 00 00 00
00 00 00

AES-ECB Output (for AES-CTR) 5D 30 A9 47 12 24 9F 84 F6 12 9A 79 5C 57
CE 02

XOR of AES-ECB output byte 8-11 with
payload (AES-CTR encryption of Payload)

(F6 12 9A 79) ⊕ (DE AD BE EF) = (28 BF 24
96) ©

 S
A

E
In

te
rn

at
io

na
l

TABLE A2 This table shows the generation and encryption of the MAC tag. Reference
Table A1 for payload information (all values in hex).

Kauth
00 01 02 03 04 05 06 07 08 09 0A 0B 0C
0D 0E 0F

AES-CBC Input 00 04 56 02 D0 00 00 00 00 00 00 00 DE
AD BE EF

AES-CBC I.V. (Example to validate byte order) 00 11 22 33 44 55 66 77 88 99 AA BB CC DD
EE FF

AES-CBC Output C9 F5 47 85 2F EE 25 43 8F 5C 8A B7 68 B0
8D BA

MAC Tag C9 F5 47 85

XOR of AES-ECB output byte 12-15 with MAC
(AES-CTR encryption of MAC Tag)

(5C 57 CE 02) ⊕ (C9 F5 47 85) = (95 A2 89
87) ©

 S
A

E
In

te
rn

at
io

na
l

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

 O’Flynn et al. / SAE Int. J. Transp. Cyber. & Privacy / Volume 1, Issue 1, 2018 17

Note the selection of I.V. makes little difference for the power analysis attack against
AES-CBC. If a known I.V. is used this can be accounted for by the attacker. If an unknown
but fixed I.V. is used, we can consider the I.V. as being XOR’d with the Kauth bytes instead
of the input data, since the first step in the AES algorithm will be to XOR each of the
AES-ECB input bytes with the key bytes. That is the algorithm as written is [(Input ⊕
I.V.) ⊕ Kauth], but we instead consider the secret key the combination of (Kauth ⊕ I.V.).
An attacker can use this recovered combination without needing to separate the I.V. and
Kauth portions, since when using the recovered combination they will be calculating
[Input ⊕ (Kauth ⊕ I.V.)], which will provide the same output as if the Kauth and I.V.
portions were known separately.

The remainder of the AES-CBC attack will need to proceed similarly to the AES-CTR
attack, since some of the AES-CBC bytes are fixed and cannot be changed.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechan-
ical, photocopying, recording, or otherwise, without the prior written permission of SAE.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE International. The author is solely responsible for the
content of the paper.

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

Downloaded from SAE International by SAE MOBILUS Open Platform, Tuesday, November 27, 2018

	11-01-01-0001: Power Analysis and Fault Attacks against Secure CAN: How Safe Are Your Keys?
	11-01-01-0001: Abstract
	Introduction
	Background
	Secure CAN
	Firmware Updates
	Key Distribution

	Example CAN
	Physical Network
	 Encrypted and Authenticated CAN Protocol

	Side Channel Power Analysis
	CPA Attacks on AES-128
	Extension to Secured CAN Protocol
	Use of H-Field Probe

	Fault Attacks
	Example of Fault Attacks on STM32F415
	Fault Attack and SCA Combinations

	Countermeasures
	Software/Hardware Cryptography Implementations
	Security through Architecture

	Conclusions

	References

