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Attacks against Secure CAN: 
How Safe Are Your Keys?
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Abstract
Designers of automotive systems find themselves pulled in an impossible number of directions. 
Systems must use the most advanced security features, but at the same time run on low-cost 
and resource-constrained hardware. Ultimately, an engineering trade-off will eventually be made 
regarding how encryption and key management is used on these systems, potentially leaving them 
vulnerable to attack.

In this paper, we detail the applicability of side-channel power analysis and fault injection on 
automotive electronic systems, showing how these dangerous techniques can be used to break 
an otherwise secure system. We build a small example network using AES-CCM to implement an 
encrypted, authenticated CAN protocol. We demonstrate how open-source hardware and software 
can easily recover the encryption keys from some of these nodes with side-channel power analysis, 
and we recover a full firmware image from one device with a fault-injection attack using the same 
tools. We also discuss how these attacks can be improved to bypass some common countermeasures 
and be applied against devices in the real world, bypassing security on in-vehicle communication 
or over-the-air firmware updates.

With these demonstrations in mind, we emphasize the importance of using strong encryption 
and authentication keys with proper key management and distribution methods. We discuss methods 
for mitigating these side-channel and fault attacks, and we use these methods to provide guidelines 
for creating a system architecture that is secure against these hardware attacks.
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Introduction

The growing complexity of automotive systems is putting a large amount of pressure 
on their designers. The industry constantly pushes to add new features for comfort, 
entertainment, and safety, requiring a single vehicle to use an increasing number 

of communicating electronic devices. Embedded devices with safety-critical roles are 
often connected to a vehicle's CAN bus alongside customer-connected modules such as 
the entertainment system [1]. Attackers have managed to abuse these complex networks, 
allowing them to break into or remotely control vehicles [1, 2]. Now, there is a research 
effort to develop encrypted in-vehicle communication to mitigate these flaws, but no 
standards are in wide use within production vehicles.

Additionally, some of the automotive electronics in use require firmware updates 
after leaving the factory. Over-the-air (OTA) updates have become possible with 
internet-connected systems, but these update methods can reveal more vulnerabilities. 
Manufacturers would like to stop customers from loading their own firmware into a car's 
systems to avoid issues with counterfeit parts, regulatory problems, and safety issues. 
Additionally, the official firmware image may include secret communication keys and 
algorithms that should not be revealed to attackers. To this end, most OTA firmware 
updates will be encrypted and signed by the manufacturer to ensure that only legitimate 
updates can be loaded onto the system.

This paper investigates encrypted and authenticated in-vehicle communication proto-
cols, showing how they are vulnerable to side-channel power analysis and fault injection 
attacks. To demonstrate these security flaws, an example CAN bus with an AES-CCM 
protocol is set up between three embedded devices. Then, two possible attacks are demon-
strated: a side-channel attack is used to recover encryption keys, and a fault injection 
attack successfully dumps a device's complete firmware. Finally, several countermeasures 
are discussed, and recommendations are made to help engineers prevent these attacks.

Background
This paper will focus mainly on in-vehicle attacks, where an attacker has some access to 
some or all nodes on a given network. Such an attacker may have a variety of objectives, 
but the typical cryptographic methods used in stopping the attacks are often similar.

The variety of nodes is important: an attacker may be able to break a critical node 
using an attack on a less critical node. For instance, if poor key provisioning is used, 
attacking a lighting or infotainment module could provide an attacker with secrets that 
provide access to the main ECU, allowing them to find additional security vulnerabilities 
or modify engine parameters.

Symmetric cryptography is often used in secure networks and for firmware encryp-
tion. Firmware signing would normally use asymmetric cryptography. While there are 
some power analysis attacks possible against asymmetric cryptography, the fact that 
the private signing key is not stored on the target device makes power analysis against 
asymmetric cryptography less valuable. Bypassing signature verification steps with fault 
attacks is more commonly used when breaking asymmetric cryptography

Secure CAN
The most popular communication system in automobiles today is the CAN bus, which 
allows many devices to send and receive messages using a single 2-wire line [3]. This 
protocol allows commands and data to be sent up to 1 Mbit/s, but is still simple enough 
for inexpensive low-power microcontrollers to use. However, the CAN standard does not 
contain any significant level of security. All messages sent on a CAN bus are easily readable, 
and there is no form of authentication to confirm the identity of a message's sender.

There are two components that would improve the security level of the CAN protocol. 
First, the messages could be encrypted before they are sent on the CAN bus. Encrypting 
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the CAN messages obfuscates traffic on the CAN bus, which may complicate reverse 
engineering of the messages, helping prevent in-vehicle attacks [4]. Second, authentica-
tion tags could be sent with each message. These tags are calculated by performing a 
cryptographic signing algorithm with the message and a secret authentication key. Then, 
any node knowing the secret key can confirm that the message was sent by a privileged 
device with the key, stopping attackers from injecting their own messages.

Firmware Updates
Manufacturers have several things at stake in their vehicles' firmware. One issue is that 
the firmware often contains several important secrets: it may have cryptographic keys 
or algorithms embedded in the source code. Additionally, manufacturers want to ensure 
that they have control over the firmware running on their vehicles. If end users could 
freely reprogram an ECU, they could adjust the car's tuning parameters, disable critical 
safety features, or destroy important data logs.

Currently deployed automotive devices provide various levels of security for their 
firmware update procedure. For instance, the Unified Diagnostic Services (UDS) protocol 
involves an authentication step: the vehicle generates a seed, and the programmer is to 
perform some secret operation on the seed, calculating a key that unlocks the secu-
rity-critical components [5]. This type of challenge-response system can sometimes be 
reverse-engineered or bypassed by abusing other programming features, such as a JTAG 
interface. Other vehicles are beginning to use over-the-air (OTA) firmware updates; 
bypassing security checks on OTA updates could allow firmware to be adjusted without 
physical access to the vehicle. Mitigating these security issues requires firmware signing 
techniques using well-known cryptographic standards.

Key Distribution
In symmetric cryptography, a shared secret key is required both for encryption and 
authentication, and safely distributing this key is a critical aspect of any secure system. 
There is a spectrum of solutions to the key distribution problem. The simplest method 
of key distribution is to use a single fixed key for all devices, allowing the OEM to pre-
program this secret into each device. This ensures all nodes on a network can easily 
send messages to each other, but an outside attacker cannot. However, this method of 
key sharing is risky—if the key is revealed, the entire network is compromised. On the 
other end, the most robust method is to allow the devices to generate random secrets 
for each communication link and securely share these keys with other devices on the 
network. This approach is safer, but generating and distributing keys on a low-resource 
embedded device can be difficult and slow. Recently, CAN-specific key distribution has 
also been proposed taking into account these limitations [4].

An automotive environment provides some unique security challenges. It is typical 
for nodes on a CAN bus to have greatly different levels of processing power: the central 
ECU in a car will likely have more resources than a door control unit. An attacker can 
use these asymmetric security levels to their advantage. If a single key is used for the 
entire network, finding the key on the weakest node is enough to compromise the entire 
vehicle's security. This paper demonstrates how easily these keys can be leaked, showing 
the necessity of a proper key management and distribution system.

Example CAN
This section describes an example network using several different devices running a 
modified CAN protocol with encryption and authentication. Note that this protocol is 
not the focus of this paper, and a basic protocol was only used to have a concrete example 
without disparaging a specific existing secure CAN protocol. Trade-offs made in this 
example protocol (such as the maximum input message size, and small MAC size) will 
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not be discussed. Instead, we wish to focus on fundamental 
weaknesses which are applicable among almost all secure 
networking proposals. This includes both secure CAN, and 
similar networking protocols such as CAN-FD or Ethernet. 
An example of the applicability of these attacks to other 
protocols can be seen when fault attacks are introduced, 
where the same type of attack which we demonstrate on a 
CAN network is performed on a USB device [6].

Physical Network
The network is designed to demonstrate a mix of full-feature 
(such as a gateway device) and low-cost (such as an end device) 
nodes. Three different devices are present: a gateway using a 
NXP MPC5748G, an end-node using a ST STM32F415, and 
an end-node using an Atmel AT90CAN128. The devices have 
a variety of hardware features: the MPC5748G is a Triple-
Core PowerPC device with a Hardware Security Module 
(HSM) including hardware AES. The STM32F415 is a single-
core ARM Cortex M4 microcontroller with hardware AES. 

Finally, the AT90CAN128 is a low-cost device without any hardware accelerated crypto-
graphic protocols. These devices are all connected on a single physical CAN bus, where 
messages are sent back and forth between them. The devices are on commercially available 
development boards that are instrumented to simplify measuring of side-channel power 
analysis leakage, but the attacks to be discussed can easily be performed on OEM hardware. 
Several of the development boards are manufactured by NewAE Technology Inc., and are 
part of the ChipWhisperer project. The physical network is shown in Figure 1.

In addition to the expected nodes, one of the devices has a ChipWhisperer Capture 
CW1200 connected which is used for power analysis and fault attacks, and another node 
has the ChipWhisperer-Lite for power analysis attacks. The ChipWhisperer-Lite is specifi-
cally included due to its completely open-source nature (including PCB files, FPGA design, 
firmware, computer software, documentation) making it a useful device for academic 
research and teaching purposes. Under normal operating conditions, these measure-
ment devices would not be present. Finally, a PEAK PCAN-USB is used as a computer 
interface for monitoring the network, and can also be used in injecting packets. While 
specific hardware is used for demonstration purposes here, the attacks discussed in this 
paper are not specific to any given measurement or control hardware—for example, the 
power analysis attacks in this paper can be applied with general-purpose oscilloscopes.

 Encrypted and Authenticated CAN 
Protocol
The devices in this network communicate with a modified CAN protocol. This protocol 
uses AES-CCM to encrypt the input data and produce a MAC tag for authentication. 
A block diagram of the encryption and authentication process is shown in Figure 2. 
The use of AES-CCM in this protocol has the advantage of only requiring a single 
AES-ECB encryption primitive, remaining relatively fast and lightweight. Full details 
of the message format are given in Appendix A.

Additionally, one common problem with securing CAN is that the CAN bus is 
limited to a data frame size of 8 bytes. Rather than using CAN-FD or ISO 15765-2 as 
previous work has done, this protocol uses the ability of AES-CTR to encrypt a frame 
smaller than 16 bytes. It also uses the extended addressing bits of CAN 2.0B mode as 
a frame counter, incrementing this value for each message. These bits are used in the 
nonce for the AES-CTR input and the MAC tag calculation to prevent replay attacks. 
The receiving node must validate the nonce to confirm it is unique, and the secret keys 
must be changed once this frame counter (“msg #”) rolls over.

 FIGURE 1  An example network includes a low-end node 
(AT90CAN128, left), medium-performance node (STM32F415, 
middle), 32-bit triple core PowerPC gateway device (MPC5748G, 
right), and a computer interface. For power analysis and glitch 
insertion various parts of the ChipWhisperer platform are shown 
attached to the nodes.
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Despite the high level of cryptographic security in this 
system, the following section will show how certain nodes 
can be trivially compromised given physical access to the 
hardware. These demonstrations will even assume that the 
system is otherwise secure —that there are no other flaws in 
the firmware or hardware.

Side Channel Power 
Analysis
Side channel power analysis is a method of breaking other-
wise secure cryptographic algorithms implemented on 
physical devices. This field is often referred to by the name 
of the original technique, Differential Power Analysis (DPA), 
proposed by Kocher et al. [7]. This work uses a more recent 
technique called Correlation Power Analysis (CPA) [8]. Both 
DPA and CPA rely on the fact the power consumption of a 
digital device on specific clock cycles has some dependence 
on the actual data being transferred on the internal data bus. 
For many microcontrollers, this specifically results from the 
fact the internal data-bus lines are first set to a pre-charge 
state before every new piece of data transferred on the data 
bus. The amount of power required to set the data-bus from 
the pre-charge state to the final state will depend on the 
number of bits set to “1” on the data bus, typically referred to 
as a “Hamming Weight” (HW) leakage model. This leakage 
model can be used to break software implementations of 
cryptographic functions, since we can learn a small amount 
of information about internal states of the algorithm. Based 
on the known input (or output) of the algorithm, we can determine the secret key 
information a single byte at a time, since we can determine what value the secret key 
must take to make the observed Hamming weight measurement valid. A comprehensive 
discussion of these attacks is given in [9].

Taking a specific example, this attack is possible on everything from small 8-bit 
microcontrollers [8] up to full computer systems [10, 11]. This attack can be performed 
with low-cost hardware such as the open-source ChipWhisperer [12] which can be built 
for approximately $200 USD (see documentation and link to source code held on GITHub 
at ChipWhisperer.com), and is applicable to real products. Example of products broken 
with it include recovering the secret key used to sign and encrypt over-the-air firmware 
update images for the Philips Hue lights [13], recovering the secret key in the Yubikey 
2 [14], recovering encryption keys used for bitstream protection on Xilinx [15], Altera 
[16], and Microsemi FPGAs [17], and breaking key fobs using the Keeloq algorithm [18].

CPA Attacks on AES-128
With side-channel power analysis, it is straightforward to break an AES encryption key. 
In a CPA attack, each byte of the key is recovered by considering all possible values {0x00, 
0x01, ..., 0xFF} of each byte. For each possible value, the correlation is calculated between an 
intermediate encryption state and a number of power traces recorded with known inputs 
(either plaintext or ciphertext). Then, at one point in time, the hypothetical intermediate 
value of the encryption state will have a high correlation with the traces. To provide a specific 
example, Figure 3a shows a power trace recorded from the STM32F415 device (as shown 
in Figure 1). In this plot, the AES hardware encryption is happening between sample 360 
and sample 500. Then, Figure 3b shows the calculated correlation at each point in time for 

 FIGURE 2  A modified CAN protocol using AES-CCM to 
provide both encryption and authentication. The input data is 
limited to 4 bytes long, and a 4-byte message authentication 
code (MAC) tag is appended. The extended ID field of the CAN 
message is used to transmit the nonce. This message format is 
described in detail in Appendix A.
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all 256 guesses, with the correct value of the key byte highlighted 
in red. This correlation peak would tell the attacker that this is 
the correct guess. This attack uses a Hamming distance leakage 
model targeting the difference between the 9th and 10th round 
states (as in [13]).

The nodes on our CAN bus have a variety of 
AES  implementations—the smallest device is using a 
software implementation, whereas the other two are using 
hardware implementations. We attempted CPA attacks on 
the three devices to provide approximate information on 
leakage characteristics of the various devices. Table 1 summa-
rizes these results, including the number of “traces” (that is, 
encryption operations to be observed) to recover the secret 
key. Note the wide range—the software implementation 
on the AT90CAN128 takes only 40 traces, the STM32F415 
takes 1900 traces, and the MPC5748G device was not able 
to be broken with a CPA attack using up to 200 000 traces. 
The 200 000 upper limit was chosen as was approximately 
the maximum number of traces expected to be allowed with 
the same encryption key (see Appendix A). This analysis was 
a basic CPA attack, so it is not claimed the device actually 
contains specific countermeasures. A more complete analysis 
is required to understand the security level of this device 
before making decisions about the number of encryptions one 
should allow before changing the encryption key.

Extension to Secured CAN Protocol
The proposed secured CAN bus is using AES-CCM (CTR with CBC MAC) mode. 
This slightly complicates the power analysis attack, as the attacker no longer has the 
exact input to the AES algorithm. However, it is still possible to attack either of the two 
encryption blocks. In Figure 2, the input to the actual AES-ECB algorithm is the nonce 
and counter value. The output of the AES-ECB algorithm is XORed with the plaintext 
in performing the AES-CTR encryption. A basic side-channel power analysis attack is 
recovering the key based on the input to the AES-ECB algorithm, so instead the attacker 
can perform a power analysis attack of later rounds of AES, as described in [19]. This 
technique was previously practically demonstrated in [20], and in the specific case of 
AES-CCM there is a shortcut due to the key reuse between the CTR and CBC modes 
described in [12].

To perform this attack in the real world, the attacker needs to be able to monitor a 
number of encryptions with varying inputs, where the approximate number of encryp-
tions for breaking the AES key is given in Table 1. The attacker does not need to control 
these inputs (plaintexts and message IDs) as long as they change. Some real devices 
always decrypt all received messages, discarding them once realizing they are invalid 
after decryption. If this is the case, an attacker can simply send arbitrary messages to 
the target—it is irrelevant that the messages are ignored, as long as they are decrypted. 
Other devices might first authenticate a message before decrypting. Here, the attacker 

will need to first break the authentication algorithm 
or monitor valid messages sent to the target device 
from within the network.

Finally, the attacker may not always need to 
recover both of the secret keys: the encryption key 
is all that is needed to view the unencrypted content 
of the messages. The authentication key might only 
need to be broken if an attacker wants to inject their 
own malicious messages onto the network.

TABLE 1 The number of traces required to recover the secret key from 
each device running AES-128 on each device. Note that the key was not 
recovered from the MPC5748G after 200 000 traces.

Device Leakage Model Traces
AT90CAN128 HW: Round 1 SubBytes Output 40

STM32F415 HD: Final Round State to Ciphertext 1 900

MPC5748G Unknown (not broken) > 200 000

 FIGURE 3  The top trace at (a) shows the power 
consumption during a hardware AES encryption on the 
STM32F415. The bottom trace (b) shows a correlation of every 
wrong key-guess (in light green) compared to the correct 
key-guess (in dark red) for each point in the power trace.
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Use of H-Field Probe
While all the test boards in Figure 1 have been modified to include resistive 
shunts to simplify power measurement, it is well known that a non-contact 
electromagnetic (EM) probe can also be used. The EM probe is typically 
designed for sensing the magnetic field (H-Field), and suitable probes are 
widely available from commercial suppliers as they are used in EM emis-
sions testing. When using a H-Field probe, the probe is simply held above 
the target chip as in Figure 4. The changing current consumption generates 
a changing magnetic field, and this field is picked up by the probe, amplified, 
and sent to the same measurement/capture equipment. The effectiveness of 
the attacks is on the same order of magnitude between the EM probe and 
the physical shunt measurement [21].

Fault Attacks
Fault (or “glitch”) attacks are used to cause a device to perform unintended 
operations. In a fault attack, the system is brought outside of its regular oper-
ating conditions for a short amount of time. These faults could include short pulses into 
the clock signal, violating setup and hold times and causing instructions to be executed 
incorrectly. They could also include voltage fault injection, where the internal core's voltage 
supply is changed momentarily. Previous work has shown that causing ringing on the 
internal power network of the target chip is one of the mechanisms which causes effective 
fault injections [22].

While both clock and voltage glitching offer surprisingly selective fault effects (being 
able to cause errors in a single instruction even), more granularity may be needed on 
advanced targets. For these targets, either electromagnetic or optical glitching would 
be preferred, as this glitching mechanism can target specific areas of the chip surface 
using a X-Y table to mechanically change the glitch location. Both of these methods have 
proven effective against a variety of advanced targets [23, 24], and low-cost solutions 
have been presented for both types of glitching [25, 26].

Fault attacks have the potential to be more powerful than side-channel analysis. 
Rather than recovering specific secret values within a device, fault attacks allow us to 
entirely bypass or modify certain operations. For example, to attack a device with signed 
firmware images, fault injection can cause the target to skip the signature check, making 
it load an unsigned image. This type of attack allows a malicious firmware image to be 
loaded onto the device, opening up additional attacks, including recovering secrets 
stored within the device memory.

One particularly weak point in many embedded devices is in their communication 
systems. One common code structure is to use a loop to transmit one byte at a time over 
an interface such as CAN or UART. With fault injection, the counter in this loop can be 
corrupted, causing the code to miss the exit condition and continue sending much more 
data than intended. Such an attack was demonstrated on a practical platform by Micah 
Scott, who successfully used a fault attack against a USB device causing it to dump the entire 
memory contents over the USB port1 [6]. Of particular interest was the fact this fault glitched 
a higher-level communication loop—the memory was dumped in valid USB packets that 
respected the maximum memory size and waited for appropriate acknowledgment signals.

Example of Fault Attacks on STM32F415
We performed a fault attack against the STM32F415 target node as a demonstration of 
how an attacker could recover code memory from an otherwise secure device. The target 
of this fault is a CAN communication loop, as in the previous description. Both code 

 FIGURE 4  A magnetic-field probe can 
be used to measure the power consumption 
of a target device, and has roughly the same 
effectiveness as the shunt resistor without 
requiring any modifications to the target.
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1In addition to the referenced paper, Scott has a detailed video of this attack at https://www.youtube.com/
watch?v=TeCQatNcF20
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and data memory are present in the same memory space on the 
STM32F415 (as on other ARM devices), and depending on the 
location of the data being printed to the communications inter-
face may result in data and/or code memory being dumped.

We used a crowbar voltage injection attack to achieve our 
effective fault [27]. This crowbar circuitry simply shorts the power 
rail of the device for a short amount of time with a MOSFET, 
as in Figure 5a. The resulting waveform on the internal core 
voltage pin of the STM32F415 is shown in Figure 5b. This glitch 
was timed to occur shortly after the beginning of the message, 
which indicates that the communication loop is running. Then, 
the ChipWhisperer software was used to automatically search 
for a precise glitch length and timing that caused the memory 
to be dumped. In practice, an attacker could run this automatic 
search over a long period of time, so it is likely that they could 
find a successful fault.

Fault Attack and SCA 
Combinations
Fault attacks have a wide variety of use-cases, and may often 
be combined creatively with side-channel attacks (SCA). For 
example, one common security measure is to use a key deriva-
tion function (KDF) with a single master key. A KDF allows a 
device to generate ephemeral keys without revealing the master 
key, giving it the ability to change keys during operation. 
Typically, it would be complicated to perform a side-channel 
attack on a KDF, as it is difficult to predict when the KDF 
will run. However, with fault injection, it may be possible to 

recover the device's code memory including the master key. Furthermore, an advanced 
device with secure write-only key storage may also be vulnerable to a combined attack: 
by loading custom firmware, an attacker could trigger a key derivation function many 
times, allowing a side-channel attack to succeed.

Another example of a combination attack was recently presented by Veredas et al.  
[24]. There, power analysis was used to determine the location in time that a JTAG 
lock bit was set in a microcontroller, and an EM fault injection attack was used to 
prevent the correct value of this bit from being read. This left the device operational 
but with an unlocked JTAG port, allowing an attacker access to the internal memory 
of the device.

Where SCA attacks may have a specific target, such as a secret key or password, fault 
attacks have a more varied range of effects, and it is difficult to predict an attacker's path. 
For instance, fault attacks on a JTAG password may first be demonstrated with high-end 
equipment, but without additional experimentation it is unknown what the ability of an 
attacker armed with only a low-cost device would be capable of. While safety-critical 
design practices greatly complicate a fault injection attack, they are not a guaranteed 
preventative measure (as demonstrated in [24]).

Countermeasures
 Software/Hardware Cryptography 
Implementations
Several countermeasures have been proposed to stop side-channel attacks. One 
common countermeasure is to add random delays before or during the cryptographic 
algorithm, but these delays are almost never effective. Recall from Figure 3a that 

 FIGURE 5  A simple MOSFET circuit in (a) pulls down the 
core power voltage. The resulting waveform in (b) causes a 
fault in the STM32F415, resulting in a memory dump.
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the encryption operation has a visible power signature—it is visually obvious when 
the encryption is happening, and it is simple to realign a set of traces to remove 
these delays [28]. In addition, many oscilloscopes are capable of triggering based on 
patterns in the analog data, such as the Sum of Absolute Difference (SAD) trigger 
in the ChipWhisperer project [12]. More robust signal processing techniques, such 
as Dynamic Time-Warping [28], can also handle complex delays at any point in the 
algorithm. Another countermeasure is to enable additional hardware peripherals to 
increase the amount of noise on the power rails; this increased noise level only increases 
the number of traces required for the key recovery to succeed, and it is rarely enough 
protection to prevent a side-channel attack.

In general, software implementations of cryptographic functions tend to be routinely 
broken, despite many proposed countermeasures to power analysis. As a high-profile 
example, the DPA Contest V4.22 presented an AES implementation including random 
masking of plaintexts and shuffled operations [29]. Despite these efforts, 10 different 
research groups recovered the secret key, with several of the attacks requiring only a 
single encryption trace to recover the key. It should now be clear that software encryp-
tion cannot easily be protected against SCA.

In hardware, there are a few more methods that can be used to prevent these attacks. 
First, a dedicated cryptography peripheral can be set up to calculate an entire round 
in parallel. Note from Table 1 the STM32F415 hardware peripheral takes considerably 
more traces than a software implementation3. This alone is unlikely to be sufficiently 
difficult, as an attacker is likely able to cause several thousand encryption operations in 
a short time. To further improve results, some additional hardware features can make 
SCA difficult. One example is Masked Dual-rail Precharge Logic [30], which attempts 
to make the overall power consumption constant regardless of the input data. Through 
careful design, it is possible to create a device that is difficult to break with SCA. To this 
end, there is a growing movement for standardized security tests of encryption modules 
(such as ISO/IEC 17825), which would give engineers the ability to make intelligent 
designs preventing key leakage through side-channel attacks.

These countermeasures increase the difficulty of a SCA to succeed by requiring 
more traces. This can be used in combination with the system architecture to provide 
security—if a device can be broken with 500 000 traces (encryption operations), but 
the secret key is guaranteed to be changed after 10 000 uses, the SCA attack is of little 
practical use.

Security through Architecture
Automotive systems require a variety of devices with different levels of complexity, and 
it would be prohibitively expensive to protect every single one from hardware attacks. 
Instead, the best form of protection is to design a key distribution architecture that 
protects the most critical components of the vehicle.

To ensure a high level of hardware security, an automotive system requires two 
main design considerations. First, the safety-critical devices must be safe against the 
attacks demonstrated in this paper. Care should be taken to select processors that have 
strong countermeasures against SCA, and these electronics should include anti-tamper 
features to prevent (or at least detect) these other types of invasive attacks. Second, the 
keys used in these secure communication links must be strong and unique. This require-
ment means that at minimum each vehicle should have its own OEM-generated key, 
and knowledge of the vehicle's VIN should not be enough to recover the key. Further 
segregations of the CAN bus should mean different groups also have unique keys. This 
way, if an end node has its firmware leaked or its keys are recovered with SCA, the critical 
components of the vehicle remain safe. Using asymmetric cryptography is one method 
of enforcing this security: each node has a separate key, so leaking an end node’s keys 
does not compromise the entire system. Using separate keys for each node in a CAN 

2See http://www.dpacontest.org/v4/
3Software AES on the STM32F415 can be broken in around 40 traces, similar to the AT90CAN128 software.
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bus may be too much work for small devices in these real-time systems. However, the 
previous solution suggests that the safety-critical nodes must use relatively high-power 
processors with strong cryptographic countermeasures. In this case, it should be possible 
to offload most of the key-management work to gateway devices, which are powerful 
enough to handle the extra work of tracking per-node keys. Recent work on methods 
of distributing keys to end nodes aligns with this requirement [4].

If using instead a KDF with a per-vehicle key, this key could be generated by 
combining a unique per-vehicle ID (such as the VIN) with some OEM secret known 
to the OEM, allowing the manufacturer to quickly recalculate each vehicle's key. Also, 
this OEM secret should vary over time to ensure that a leak of an old OEM secret does 
not compromise newer models.

Asymmetric cryptography is of great value in avoiding issues with shared keys. 
Typically asymmetric algorithms are too slow for use in real-time encryption/decryption 
on communication links, but are helpful for both key distribution, and verification or 
transfer of critical data blocks (e.g., firmware signing). Where asymmetric cryptography 
can be used in such a way the private key is not stored on the vulnerable device (i.e., 
when performing signature verification) removes sensitive data that can be leaked via 
side-channel or other means.

For embedded devices, ECC with Curve25519 has become a popular choice due 
to patent-free status combined with excellent performance possible even on embedded 
devices [31]. An excellent example of side-channel attack on Curve25519 implementations 
is available in [32], which also includes references to other work of interest.

Conclusions
This paper has presented a cryptographically secure CAN protocol and shown how it can 
be trivially broken using side-channel power analysis and fault injection. Open-source 
tools were used to recover secret encryption keys and full firmware images on a variety 
of hardware platforms, and the full extent of these attacks in practice was discussed.

With these demonstrations in mind, future work on secure CAN standards should 
focus on designing systems that are resilient against the effects of SCA and fault injection 
to ensure a high level of vehicle safety. To achieve this safety, automotive system designers 
must be aware of the challenges present in embedded security. These systems must be 
designed to ensure that safety-critical devices are protected against hardware attacks, 
and careful key management is central to ensuring that these protected components are 
not left open to other vulnerabilities.

Definitions/Abbreviations
AES - Advanced encryption standard
CAN - Controller area network
CBC - Cipher block chaining
CCM - CTR Mode with CBC MAC
CPA - Correlation power analysis
CTR - Counter
DPA - Differential power analysis
ECB - Electronic code book
EM - Electromagnetic
H-Field - Magnetic field
HD - Hamming distance
HW - Hamming weight
KDF - Key derivation function
MAC - Message authentication code
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OEM - Original Equipment Manufacturer
OTA - Over-the-air
SCA - Side channel analysis
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Appendix A: Details of Secure CAN 
Protocol
This appendix provides technical details of the secure CAN protocol, which is described 
in Figure 2. Providing a secure communications link will require additional data to be 
transferred beyond just the original payload. Since the standard CAN data payload is 
limited to 8 bytes, adding security to an 8-byte data payload would require splitting the 
message. To avoid this issue, the protocol here has a maximum user data payload size 
of 4 bytes. The remaining 4 bytes available in the 8-byte CAN payload are reserved for 
a Message Authentication Code (MAC), which allows the receiver to confirm a given 
message was sent from the claimed node and has not been modified.

The encryption/authentication method is simply a slight modification of the 
standard AES-CCM (see RFC 3610) encryption mode, which uses AES-CTR mode for 
encryption and AES-CBC for authentication. The modification here is that (1) different 
keys are supported for encryption and authentication, and (2) only a single block is ever 
operated on due to the short message size, so the counter inputs to the AES-CTR mode 
are fully fixed.

Our secure CAN block can be seen as taking as an input a given message which has 
a standard 11-bit ID (with no extended ID), and four payload data bytes. This example 
protocol may be limited in real-life use cases, but is designed primarily to demonstrate 
aspects of a secure protocol without adding the complexity involved in using CAN-FD 
or ISO 15765-2 to support longer messages. The secure CAN protocol transmits the 
message on the CAN network in such a manner that the message is encrypted, and 
someone spoofing the CAN network could not replay messages (i.e., they could not 
record encrypted messages of a door unlock command and simply replay them as-is, 
without breaking the encryption).

Providing replay protection requires some “message counter”. We hijack the 
“extended ID” bits for this purpose, giving us an 18-bit counter. A transmitting node 
simply increments this on every message sent, and the receiving node will verify for 
every message that the counter has been incremented from the last valid received 
message. The receiver MUST only update their internal state of what constitutes a 
valid counter-ID after verifying the message came from an authentic source (i.e., 
MAC verification passes OK), as otherwise an attacker can perform a simple denial 
of service attack on the CAN bus by sending messages with the message counter set 
to the maximum value. Under normal operations the keys must change before that 
counter overflows, as once the counter overflows the current keys can no longer be 
used for communication. With an 18-bit counter this means 218 (262 144) messages 
can be exchanged with a given key pair.

In addition to the message counter, a message authentication code (MAC) is used 
such that the receiver can verify the message authenticity. The MAC code is 4 bytes 
appended to the data payload. The MAC is dependent on the contents of the message 
counter, message ID, data payload, and a secret “authentication key” known only to 
authorized nodes on the network.

Tables A1 and A2 show the generation of the encrypted payload and MAC tag. 
In this example the input message is DE AD BE EF (4 bytes), which is converted to 
28 BF 24 96 95 A2 89 87 . The first four bytes are the encrypted payload, the next four 
bytes are the MAC tag. This message must be transmitted with a standard message 
ID of 0x2D0 (the original message ID), and with the extended ID bits set to 0x00456 
(the message counter). In Table A2 a non-zero I.V. is used as a calculation example to 
validate byte ordering, but if following NIST SP800-38C this should instead all 0’s if 
a fixed value is used.
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Power Analysis Considerations
Power analysis against plain AES-ECB is used in the paper as a reference for the number 
of traces required. Recovering all 16 bytes of the AES-128 encryption key requires us to 
perform encryption (or decryption) operations, where we know or control all 16 bytes 
of the input data. This data must be non-constant in order for us to perform a standard 
CPA attack. When other modes are used (such as AES-CTR mode used here), most of 
the input data is fixed (i.e., the nonce values are the input to the AES-ECB block). We 
can still apply CPA attacks against other modes (such as the AES-CCM mode used here) 
with some modifications. The direct application to AES-CTR mode was first described 
in [19]. Due to the diffusion property of AES, the small changes of input text will result 
in all bytes being recoverable at a later round of the AES algorithm. This does not even 
require us to know the value of all constant bytes.

The paper in [19] was based on bytes 14-15 changing (as would happen in AES-CTR 
when multiple blocks are encrypted). Our protocol instead has an ability to change the 
frame counter bytes, which are mapped into bytes 0-2 of the AES-ECB input, so would 
require a slight modification to how the attack is handled. Such modifications were 
used in [13, 33].

In [13] a specific attack against AES-CCM was used, which works assuming the 
AES-CCM authentication and encryption key are the same. A power analysis attack 
against AES-CBC mode may be easier than AES-CTR mode, since the input data will 
be fed more directly into the AES-ECB primitive for AES-CBC. This would allow an 
attacker to perform power analysis on only the authentication operation, and recover the 
encryption key also used for encryption. The secure CAN protocol used in this paper has 
separate authentication and encryption keys to avoid this attack, requiring an attacker 
to perform power analysis against both the encryption and authentication operations.

TABLE A1 This table shows the encryption of the payload portion of the CAN message 
(all values in hex).

Original Message ID 2D0

Original Message Payload DE AD BE EF

Message Counter 00456

Kenc (use with AES-CTR) 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 
4F 3C

AES-CTR Nonce (AES-ECB Input) 00 04 56 02 D0 00 00 00 00 00 00 00 00 
00 00 00

AES-ECB Output (for AES-CTR) 5D 30 A9 47 12 24 9F 84 F6 12 9A 79 5C 57 
CE 02

XOR of AES-ECB output byte 8-11 with 
payload (AES-CTR encryption of Payload)

(F6 12 9A 79) ⊕ (DE AD BE EF) = (28 BF 24 
96) ©
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TABLE A2 This table shows the generation and encryption of the MAC tag. Reference 
Table A1 for payload information (all values in hex).

Kauth
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 
0D 0E 0F

AES-CBC Input 00 04 56 02 D0 00 00 00 00 00 00 00 DE 
AD BE EF

AES-CBC I.V. (Example to validate byte order) 00 11 22 33 44 55 66 77 88 99 AA BB CC DD 
EE FF

AES-CBC Output C9 F5 47 85 2F EE 25 43 8F 5C 8A B7 68 B0 
8D BA

MAC Tag C9 F5 47 85

XOR of AES-ECB output byte 12-15 with MAC 
(AES-CTR encryption of MAC Tag)

(5C 57 CE 02) ⊕ (C9 F5 47 85) = (95 A2 89 
87) ©
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Note the selection of I.V. makes little difference for the power analysis attack against 
AES-CBC. If a known I.V. is used this can be accounted for by the attacker. If an unknown 
but fixed I.V. is used, we can consider the I.V. as being XOR’d with the Kauth bytes instead 
of the input data, since the first step in the AES algorithm will be to XOR each of the 
AES-ECB input bytes with the key bytes. That is the algorithm as written is [ (Input ⊕ 
I.V.) ⊕ Kauth], but we instead consider the secret key the combination of (Kauth ⊕ I.V.). 
An attacker can use this recovered combination without needing to separate the I.V. and 
Kauth portions, since when using the recovered combination they will be calculating 
[ Input ⊕ (Kauth ⊕ I.V.) ], which will provide the same output as if the Kauth and I.V. 
portions were known separately.

The remainder of the AES-CBC attack will need to proceed similarly to the AES-CTR 
attack, since some of the AES-CBC bytes are fixed and cannot be changed.
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