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ABSTRACT 
We introduce a new shortcut interface called KeyMap that 
is designed to leverage Norman’s principle of natural map-
ping. Rather than displaying shortcut command labels in linear 
menus, KeyMap displays a virtual keyboard with command 
labels displayed directly on its keys. A crowdsourced experi-
ment compares KeyMap to Malacria et al.’s ExposeHK using 
an extension of their protocol to also test recall. Results show 
KeyMap users remembered 1 more shortcut than ExposeHK 
immediately after training, and this advantage increased to 
4.5 more shortcuts when tested again after 24 hours. KeyMap 
users also incidentally learned more shortcuts that they had 
never practised. We demonstrate how KeyMap can be added 
to existing web-based applications using a Chrome extension. 

Author Keywords 
interaction techniques; learning; keyboard shortcuts 

CCS Concepts 
•Human-centered computing → Human computer inter-
action (HCI); Empirical studies in HCI; Interaction tech-
niques; 

INTRODUCTION 
Keyboard shortcuts (or “hotkeys”) are an important part of 
desktop applications: they allow expert users to input com-
mands quickly, with little motor action or visual distrac-
tion [12, 15]. However, despite these advantages, users fail to 
adopt keyboard shortcuts over slower graphical user interface 
(GUI) techniques. Most users have a small shortcut vocabu-
lary [12] for common commands such as “copy” and “paste”, 
and it is diffcult to remember and use new shortcuts. An im-
portant reason for this diffculty is that shortcuts are typically 
hidden in GUI-activated tooltips, dropdown menus, or help 
screens, so they are hard to fnd, and using a shortcut for the 
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Figure 1. KeyMap is an interaction technique for improving keyboard 
shortcut vocabulary. It displays command labels on a virtual keyboard 
upon pressing and holding a modifer key. The fgure shows KeyMap 
being used with Overleaf. For a closer view of KeyMap see Figure 2. 

frst time requires switching away from the GUI. This diff-
culty contributes to a production bias [5], where users sacrifce 
long-term productivity in favour of short-term productivity. 

Several interaction techniques and design guidelines have been 
proposed to improve the adoption of keyboard shortcuts. Skil-
lometers [14] motivate users to learn shortcuts by visualizing 
their potential benefts. Grossman et al. [10] explored de-
sign guidelines, such as adding auditory cues and disabling 
menu items to help users identify and memorize shortcuts. Ex-
poseHK [13] displays all available commands at once when a 
user presses a modifer key, such as ctrl , helping them rehearse 
the action of inputting a keyboard shortcut. However, few 
previous techniques have focused on making shortcuts more 
memorable through their visualization and layout. 

We introduce KeyMap, an interactive guidance technique that 
makes keyboard shortcuts more memorable (Figure 1). When 
a modifer key is held down, KeyMap displays an on-screen 
keyboard with command names labelled on the keys. The 
interface is inspired by Norman’s principle of natural mapping, 
matching the display of the shortcuts to the physical layout of 
the keyboard. This layout makes shortcuts more memorable 
due to spatial memory, giving users memory cues with greater 
cue-target strength, while also helping users discover and 
practice keyboard shortcuts. 

A crowdsourced study (n = 98) compares KeyMap’s perfor-
mance to the current state-of-the-art, Malacria et al.’s Ex-
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poseHK [13]. Using Malacria et al.’s 13-command protocol 
extended to measure recall, KeyMap participants remembered 
1 more command immediately after training, and 4.5 more 
24-hours later. Further, KeyMap promotes incidental learning: 
14 KeyMap participants remembered at least one command 
that they had never previously entered. We provide an open 
source Chrome extension1 to show KeyMap is easily added to 
existing applications. 

We make two contributions: (1) a demonstration that using 
Norman’s natural mapping also makes interfaces more memo-
rable; (2) a new technique that improves shortcut memoriza-
tion compared to the state-of-the-art. 

RELATED WORK 
We review why people fail to use keyboard shortcuts and 
previous techniques designed to encourage shortcut adoption. 

Keyboard Shortcuts in Practice 
Keyboard shortcuts are among the fastest interaction methods 
available to users [17, 12, 10, 19, 14]. This speed is due 
to low psycho-motor demands and workfow disruption. To 
illustrate these factors, consider a user typing a document 
with both hands. To select a command from a menu, they 
must home one hand to the mouse, “wiggle” the mouse to 
display and identify the cursor, move the cursor to the menu, 
select the command, move the cursor back to the document, 
and home the hand back to the keyboard. This process can 
disrupt their workfow, and many of these steps require hand-
eye coordination. Both of these issues are greatly improved 
when using keyboard shortcuts. 

Despite this potential, keyboard shortcuts are used relatively in-
frequently [12] and typical users only know a small vocabulary 
of common commands, such as “copy” and “paste” [2]. One 
important reason for this low adoption rate is the paradox of 
the active user [5], where users fail to seek higher performance 
due to cognitive biases. With shortcuts, there is a “production 
bias”, where users sacrifce long-term productivity to preserve 
their short-term productivity. This is because learning and 
practising new shortcuts creates an initial productivity “dip” 
since using shortcuts is so different than GUI interaction [19, 
9]. In general, rather than optimising absolute performance, 
users often satisfce [21] by choosing a technique like clicking 
on a menu or toolbar because it is “fast enough” [22]. 

Improving Shortcut Adoption 
Adopting regular use of a keyboard shortcut involves four steps. 
First, a user becomes motivated to learn a new shortcut for a 
command. Second, they discover the relationship between a 
command and its shortcut: for instance, that “copy” is ctrl + c . 
Third, they rehearse the shortcut action and begin practising it. 
Fourth, they memorize the shortcut mapping and fully adopt 
using the shortcut for the command. With continued usage, 
the shortcut action ultimately becomes “muscle memory” and 
they attain automaticity [20]. Prior work has addressed one or 
more of these four steps. 

Chrome extension: https://chrome.google.com/webstore/ 
detail/fpminkfnndfokkmoobbngdpnijbcajkl, with source code at 
https://github.com/blainelewis1/keymap 

To motivate users to learn keyboard shortcuts, Skillome-
ters [14] display a user’s overall command selection perfor-
mance, and also show how much they could improve if they 
used shortcuts. Grossman et al. [10] evaluated more forced 
motivational approaches, including adding a 2-second delay 
after each command selected with a menu and disabling menu 
selections all together. 

Other interfaces help users discover new keyboard shortcuts. 
For example, to make shortcuts more prominent in the GUI, 
IconHK [8] integrates visual hints about keyboard shortcuts 
into command icons. Other methods communicate associated 
shortcuts after menu commands. Blur [19] shows shortcut 
sequences for recent menu commands in a “calm notifcation” 
window, and Grossman et al. [10] communicate the associated 
shortcut with a visual cue card or using speech synthesis audio. 

The HotKeyCoach [11] also uses a cue card to aid discovery, 
but it adds the ability to rehearse the shortcut in a special 
mode. Malacria et al. [13] note that shortcuts are often hidden 
in menus or tooltips that appear when using the GUI, not the 
keyboard. Instead, they propose ExposeHK, a techique that 
displays all associated shortcuts across all GUI menus when 
a modifer key is pressed. This helps users discover shortcuts 
while also rehearsing the initial action of entering a short-
cut. Experiments showed this improved shortcut usage over 
IconHK [8] tooltips or Grossman et al.’s [10] audio feedback. 
We consider ExposeHK the state-of-the-art, and it forms the 
benchmark for our comparison. 

Some of the previous techniques have indirectly addressed 
the fourth step of memorizing shortcut mappings. For exam-
ple, Grossman et al. found that disabling menu items strongly 
motivated users to commit shortcuts to memory, and using 
audio for discovery also helped users to remember shortcuts. 
While previous works such as Grossman et al. and Malacria 
et al. draw conclusions about memorization from their exper-
iments, these are based on rates of shortcut usage compared 
to GUI commands. No previous shortcut adoption techniques 
have explicitly tested for memorization performance using 
formal short-term and long-term recall tests [3]. Measuring 
shortcut memorization is crucial to understanding technique 
performance, and improving memorization rates is necessary 
to expand a user’s vocabulary of shortcuts. 

In summary, previous techniques focused on shortcut motiva-
tion, discovery, and rehearsal. Our aim is to make keyboard 
shortcuts more memorable as well. 

KEYMAP 
KeyMap (Figure 2) is an interface that aims to improve key-
board shortcut adoption in three ways. Like ExposeHK [13], 
KeyMap makes it easier to discover and rehearse shortcuts, 
but it is also designed to make shortcuts more memorable. We 
frst describe the KeyMap interface, then provide theoretical 
grounding for hypothesized benefts. 

KeyMap Interface and Interaction 
KeyMap is partially inspired by the visual design of Hotkey 
Palette [1], a general purpose interaction technique for docu-
ment and window retrieval. It uses an on-screen keyboard with 

1 

https://chrome.google.com/webstore/detail/fpminkfnndfokkmoobbngdpnijbcajkl
https://chrome.google.com/webstore/detail/fpminkfnndfokkmoobbngdpnijbcajkl
https://github.com/blainelewis1/keymap


Figure 2. Example KeyMap interface shown while the Command modifer is held down, each shortcut key associated with Command is rendered with the 
name of the corresponding application command. 

previews of resources displayed inside their associated keys. 
A resource is opened using Fn and the key, or by clicking on 
the rendered key. However, the technique does not support 
shortcuts for commands and no evaluation was presented. 

KeyMap also uses a visualization of a physical keyboard, ren-
dered near the bottom of the screen. It appears after a short 
delay when the user presses and holds a modifer key (e.g. shift , 
command , ctrl ). Keys are labelled with associated commands. 
These commands are typically from the focused application, 
but global commands can be included. To maximize available 
screen space, only the bottom left modifer keys are shown 
until activated. 

Users can activate KeyMap and select commands in several 
ways. They can click a modifer key to display the full key-
board, then click the key for the command. More likely, they 
can hold down a modifer key on the physical keyboard, use 
the keyboard visualization to scan for a command, then press 
the corresponding physical key. They can also mix these 
strategies by typing a modifer, then clicking on a key. Finally, 
expert users can simply type shortcuts without waiting for the 
visualization to appear. 

KeyMap uses visual embellishments to help users identify and 
remember shortcuts. One example is using colour-coding to 
represent semantic groupings, helping users quickly browse 
and scan commands. For instance, commands from an “edit” 
menu could be coloured purple. Showing recognizable com-
mand icons on the keys could help users quickly identify 
common commands. The on-screen keyboard also includes 
important visual details, such as the nubs on the f and j 

keys. 

In the experiments that follow, we evaluate a rudimentary 
version of KeyMap with fxed command sets. However, 
a deployed version of the system could dynamically popu-
late shortcut-to-command mappings using tools such as Mi-
crosoft’s UI Automation API, which was used in Blur [19], to 
discover and display shortcuts automatically. In the Discus-

sion section, we describe how our Chrome extension populates 
shortcut sets. 

KeyMap Benefts 
The core principle behind KeyMap is that a visual interface 
should match as closely as possible to the physical actions 
used to operate it. This tight correspondence between display 
and input is an instance of Norman’s natural mapping [16], but 
we leverage this principle in a unique way. Normally, natural 
mapping is used to make interfaces intuitive; instead, we use 
it to encourage users to learn and remember shortcuts. Below 
we explain how leveraging Norman’s mapping leads to this 
and other potential benefts. 

Memorization 
KeyMap helps users memorize shortcuts by leveraging spatial 
memory. Keyboard layouts have many recognizable “land-
marks” [24], such as the distinctive shape of certain keys, nubs 
on the f and j keys, and a consistent and familiar layout. 
Together, these make a keyboard image well suited for spa-
tial memory when commands are associated with keys. A 
keyboard layout also helps users learn spatial relationships 
between commands. For instance, if the user knows that ctrl + 

c activates “copy” and notices that “copy” is beside “paste”, 
they can infer that the shortcut for “paste” is next to c on 
their keyboard. 

In particular, KeyMap’s visualization helps users’ cued re-
call process. When entering a keyboard shortcut, users think 
of a command (a cue), and they must recall the keyboard 
shortcut based on this cue. KeyMap improves this process by 
increasing the strength of the cue-target association [4]. For 
example, consider the “replace” command, with the shortcut 
ctrl + h . This command can be diffcult to remember since the 
command’s name has nothing in common with its keyboard 
shortcut, giving no cue-target association. KeyMap strength-
ens this cue-target association by matching the display of the 
command with its shortcut execution. KeyMap’s layout also 
creates new potential information for cues. For instance, the 
similar commands “fnd” and “replace” use the nearby keys 

f and h , improving the cue-target association. 



Discovery 
Like ExposeHK, KeyMap supports browsing for shortcuts by 
displaying shortcuts when the user presses a modifer key or 
combination. Importantly, this browsing process can be done 
solely with the keyboard, and it does not require using the 
mouse. Additionally, the same features that support spatial 
memory also help users rapidly scan for commands, speeding 
up the visual search process [18]. 

Once the user has some knowledge of commands, KeyMap 
facilitates discovery of further shortcuts by using spatial and 
colourised groupings. Related commands appear in nearby 
locations and have similar colours. These visual details let 
KeyMap represent semantic relationships without a traditional 
menu structure, helping users learn commands that are similar 
to the ones they already know. 

KeyMap also helps users learn new commands through inci-
dental learning. This beneft is unique to KeyMap. In a regular 
menu, commands that are next to each other are typically se-
mantically related, but their shortcuts might be completely 
different. In contrast, commands that appear near each other 
in the KeyMap visualization must have shortcuts with similar 
motor actions. Thus, the same spatial relationships that help 
with spatial memory can also help users discover and learn 
shortcuts for new commands, even without practicing them. 

Rehearsal 
When a user is rehearsing a shortcut, they hold down a modi-
fer key, wait for the visualization to appear, fnd the correct 
command, and type the shortcut key. Skilled users simply 
repeat these actions without waiting for visual guidance. As in 
ExposeHK, users can browse commands without using a point-
ing device, making the novice action useful practice for the 
expert action and easing the novice-to-expert transition [19]. 

However, the KeyMap display provides further reinforcement 
for these actions. When the user selects a command with the 
pointer, ExposeHK has no element of rehearsal, but KeyMap 
still helps users learn the positions of commands due to its use 
of Norman’s mapping. Although clicking a command is not 
a rehearsal of a keyboard shortcut motor action, it still helps 
users learn the location of the shortcut on their keyboard. 

Faster Execution 
Finally, by using Norman’s mapping, KeyMap also has higher 
stimulus-response (SR) compatibility [7] compared to Ex-
poseHK. This effect states that human response times are 
faster when the response action is compatible with its stimulus. 
For instance, a classic experiment tested participant reaction 
times when pressing buttons on their left or right in response 
to lights on their left or right, and found slower reaction times 
when the light-button relationship was crossed. These effects 
generalize to a wide range of activities [23]. 

In KeyMap, the response of typing a shortcut is compatible 
with the stimulus, which is laid out like a keyboard. Thus, 
when users are rehearsing shortcuts, they should enter short-
cuts more quickly using KeyMap than with a standard menu or 
ExposeHK. Additionally, if KeyMap users do beneft from the 
improved memory, they can leverage memory guided visual 
search [25]. Thus, KeyMap should beneft from a slightly 

Figure 3. The selection task interface. The interface includes the short-
cut technique (in this case, KeyMap), an image stimulus with a coloured 
border, and an experiment progress bar. The progress bar was at the top 
for KeyMap and the bottom for ExposeHK. Stimuli were placed such 
that the technique did not occlude them. 

faster execution due to SR compatibility and memory guided 
visual search, but it is unclear whether this effect will be strong 
enough to observe. 

EXPERIMENT 
We conducted a crowdsourced experiment to compare 
KeyMap to ExposeHK for improving memory and shortcut 
use. Our protocol follows that of Malacria et al. [13], but we 
extend it with two tests to examine shortcut memory: a recall 
test at the end of the training session, and a retention test 24 
hours later. The experiment tests three main hypotheses: 

• H1: KeyMap users remember more shortcuts than Ex-
poseHK users. 

• H2: KeyMap users incidentally learn more shortcuts than 
ExposeHK users. 

• H3: KeyMap users have faster practiced selection times 
than ExposeHK users. However, we also expected KeyMap 
to initially be slower because users need to identify the 
mapping between command groups and colours, which is 
more clearly labelled in ExposeHK. 

Command Selection Techniques 
We tested fundamental, feature-comparable versions of 
KeyMap and ExposeHK. To reduce potential confounds stem-
ming from KeyMap’s use of coloured command groupings, 
command categories were coloured in both ExposeHK and 
KeyMap (Figures 3 and 4). Both techniques support three 
methods of command selection: pointer-based, guided, and 
shortcut, explained below. 

KeyMap 
A set of buttons representing modifer keys is displayed near 
the bottom left of the screen. In a pointer-based selection, the 
user begins by clicking on a modifer button, which displays 
the KeyMap visualization across the bottom of the screen 
(Figure 3). Categories of similar commands appear as coloured 
groups of keys, but these categories are not labelled. When 
the user clicks a key on the onscreen keyboard, the associated 
command is selected, and the visualization disappears. 



In a guided selection, the user presses and holds the shift mod-
ifer key on the physical keyboard. The KeyMap visualization 
appears after a 500 ms delay. Once the desired command is 
found, the user presses the associated physical shortcut key to 
select the command. Finally, in a shortcut selection, the user 
simply executes the associated keyboard shortcut (e.g. shift + 

A ). In this case, there is no need to wait for the 500 ms delay 
and the visualization never appears. 

ExposeHK 
A linear menu bar is displayed across the top of the display 
(Figure 4). Each menu is labelled with its category name, and 
all items within each category are identically coloured. In a 
pointer-based selection, the user clicks the label of a menu to 
expand it, then completes a command selection by clicking on 
the intended menu item. In a guided selection, the user presses 
and holds the shift key for 500 ms to expand the menus, then 
searches for a command and presses the corresponding key. 
Lastly, shortcut selections are identical to KeyMap: the user 
presses shift and the corresponding letter. 

Unlike the original ExposeHK, we added a 500 ms delay 
before displaying either technique visualization. This delay 
allows us to distinguish between guided and shortcut invo-
cations. We also chose to use the shift modifer key for all 
shortcuts, maintaining consistency across operating systems 
(Windows ctrl vs. OS X command ) and avoiding conficts with 
existing web browser shortcuts. 

Tasks 
During the experiment, participants complete two types of 
tasks: selection and recall. The selection task is closely based 
on Malacria et al.’s experiment. First, the participant positions 
their cursor in a 70 × 70 px in the centre of the screen and 
presses the space key. This step emulates a real command 
selection, where the mouse begins on a document. Next, an 
image stimulus appears, representing a command to be entered, 
with a coloured border indicating the command’s category. 
The image is positioned to avoid occluding the technique 
visualizations. The participant selects the target command 
with their interface using one of the three selection methods. 
If they select an incorrect command, the screen fashes red, 
and “Incorrect” appears on the screen with a 3 second timer 
before continuing to the next trial. 

The recall task was added to test participants’ memory of 
shortcuts. In a recall task, an image stimulus appears without 
a coloured border. Participants simply enter a keyboard short-
cut to continue to the next trial. The KeyMap or ExposeHK 
visualizations do not appear, and the participant is not told 
whether the shortcut was correct. 

We adapted command names and image stimuli from Gross-
man et al. [10]. We updated some command names and icons 
for clarity (e.g. the watermelon icon was unclear). We also 
removed the “vegetables” category from the main experiment 
to avoid semantic confict with “fruits,” leaving 60 commands 
in 5 categories. To avoid any effects if some commands are 
more memorable than others, we used a random subset of 35 
commands for each participant, regardless of condition. 

Procedure 
The session began with a consent form and a pre-study ques-
tionnaire about demographics, computer information, and key-
board shortcut use. Participants were then randomly assigned 
to use KeyMap or ExposeHK. Next, they selected one of fve 
keyboard layouts that best matched the physical layout of their 
keyboard. Then, they followed an interactive tutorial that ex-
plained how to use all three selection methods of the assigned 
technique and introduced them to the selection task. The tu-
torial used commands from the “vegetables” category, which 
did not appear during the main experiment. 

After the tutorial, participants completed 6 blocks of selection 
tasks. Each block contained 25 trials comprising selections 
of 13 different commands (some repeated). Participants were 
encouraged to take a short rest between blocks. After the fnal 
block, they completed two sets of recall tasks. The frst set 
tested all 13 commands that appeared during the selection 
tasks. The second tested fve additional commands that did 
not appear in the selection tasks, with one command randomly 
chosen from each category. Finally, participants answered 
a post-study questionnaire asking how many shortcuts they 
thought they remembered and subjective questions about their 
overall experience. 

On the fnal screen, we reminded participants that there would 
be a short followup session. We contacted them 24 hours later 
with a link to the followup experiment. If they accepted, they 
completed two sets of recall tasks using the same commands 
as the main session. Then, they answered a followup ques-
tionnaire asking again how many shortcuts they thought they 
remembered. 

We were worried that participants might take screenshots of the 
visualizations to aid their memory. We combatted this concern 
in two ways. First, participants were not aware that their recall 
would be tested until the end of the experiment, so they had 
little reason to record the menu until too late to do so. Second, 
at the end of the followup session, we asked participants if they 
recorded the menu. We worded this question so it was clear 
that there were no negative implications for their participation 
or monetary reward if they had recorded the screen. 

Design 
We followed Malacria et al.’s protocol for examining com-
mand selection. We used a truncated Zipfan distribution of 13 
commands, with each command selected the following num-
ber of times per block: [8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]. 
This distribution has a heavy skew towards the most common 
commands, refecting real command frequencies [6]. These 
commands were assigned to shortcut keys in the same way 
as Malacria et al. The most frequent command (8 times per 
block) used a key from the left side of the keyboard (123 qwe 
asd zxc), the second most frequent (4 times) used a key from 
the right side (7890 uiop jkl; m,./), and the third most frequent 
(2 times) used a key from the center (456 rty fgh vbn). The 
remaining 10 commands were distributed such that 2 were 
assigned to each category. 

The experiment uses a 2 × 6 × 4 mixed-factorial design. 
TECHNIQUE is a between-subjects factor with 2 levels: 



Figure 4. The expanded version of ExposeHK. 

KeyMap or ExposeHK. BLOCK is a numeric within-subjects 
factor ranging from 1 to 6. FREQUENCY is a within-
subject factor with levels 8, 4, 2, and 1 based on the 
Zipfan command distribution. Each participant completed 
25 trials × 6 blocks = 150 selections. 

We recorded three dependent measures. Selection time was 
measured during the selection task. A selection began as soon 
as the previous trial was complete, and continued until the 
participant began the next trial. This time therefore includes 
the mouse centering task and command selection. Recall is 
the total number of correct selections made during the recall 
tasks in the main experiment session. Retention is the same as 
Recall, but for the followup session 24 hours later. 

Participants and Apparatus 
Participants were recruited from the United States using Ama-
zon Mechanical Turk. They were informed that the task 
would take approximately 20 minutes and they would receive 
US$2.50, which is approximately United States’ minimum 
wage. We required participants to have 1000 approved HITs 
(tasks on Mechanical Turk) and a 95% approval rate. We 
granted qualifcations to workers to ensure that they could 
only complete the experiment once. Participants were also 
paid a US$1.00 bonus for completing the followup session. 
The pay rate for the followup session was higher than the main 
session to encourage participants to return. 

The experiment was built as a web application using JavaScript 
and React. Participants used either a laptop or desktop to 
complete the experiment, and were limited to using either 
Chrome or Firefox to maximize compatibility. 

Results 
We recruited 118 participants. We used two criteria to flter 
out low-quality data: if a participant answered affrmatively 
to recording the menu visualization (3 participants), and if 
they answered 0 correct during the followup session (17 par-
ticipants). The following analysis uses the data from the 98 
participants remaining after fltering. 

Participants were aged 20 to 61 (M=34.8, SD = 8.59); 61 were 
male, 36 were female, and 1 identifed with another gender; 
87 were right handed, and 11 were left handed. Participants 
reported that they used shortcuts moderately often on a range 
from 1 (“I never use shortcuts”) to 5 (“I am an expert shortcut 
user”) (M=3.07, SD = 1.08). Desktop users made up the majority 
of participants (56 used desktop and 42 laptops). 77 partici-
pants used a mouse, and 21 used a trackpad. 

The main session was balanced with 49 participants in each 
technique condition. 28 participants from ExposeHK returned 
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Figure 5. Recall scores in the main session, grouped by frequency. Over-
all, KeyMap participants recalled a median of 10 commands, and Ex-
poseHK participants recalled 9. 
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Figure 6. Retention scores in the followup session, grouped by frequency. 
Overall, KeyMap participants recalled a median of 10 commands, and 
ExposeHK participants recalled 5.5. 

for the followup session (57%) and 37 participants returned 
for the KeyMap technique (76%). A test of proportions shows 
that this is nearly signifcant (χ2 = 2.924, p = .087, φ = .21), which 
might indicate that KeyMap provided a more positive experi-
ence than ExposeHK. 

H1: Shortcut Memory 
Participants remembered more shortcuts with KeyMap than 
with ExposeHK. In the recall test (Figure 5), participants 
remembered more shortcuts using KeyMap (MEDIAN = 10) 
than ExposeHK (MEDIAN = 9). A Mann-Whitney test showed 
that this difference is signifcant: (U = 354, p < 0.05, η2 = 0.37). 
24 hours later, in the retention test (Figure 6), participants 
again remembered more shortcuts using KeyMap (MEDIAN = 
10) than using ExposeHK (MEDIAN = 5.5): (U = 903.5, p < 0.05, 
η2 = 0.4). In other words, KeyMap helped users memorize one 
more shortcut (7% of the command set) than ExposeHK, and 
KeyMap users tended to retain this memory advantage after 
24 hours. We therefore accept H1: KeyMap helped users to 
memorize more shortcuts than ExposeHK. 



H2: Incidental Learning 
KeyMap users recalled more unpracticed commands than Ex-
poseHK users. During the recall test, we showed 5 commands 
that did not appear in the selection tasks. In the KeyMap con-
dition, participants entered a total of 19 of these commands 
correctly, which is a 7.8% correct selection rate from the 245 
cued items (49 participants × 5 commands). In particular, 
11 participants entered one command correctly, 1 participant 
entered two, and 2 participants entered three. In ExposeHK, 6 
participants entered one correct command (2.4% correct). A 
test of proportions shows that there is a signifcant difference 
between the total numbers of correct commands (χ2 = 6.07, 
p < .05, φ = .25). However, when comparing the number of 
participants making at least one correct selection, the effect is 
marginal (χ2 = 3.08, p = .079, φ = .18). 

To contextualise these results, suppose that a participant re-
membered that the shift key was the required modifer. Then, 
there are approximately 50 keys to choose from, resulting in 
a correct selection rate of 2%. However, with KeyMap, users 
might remember the location of the category on the keyboard, 
leading to a more informed guess. If users perfectly remem-
bered the 7 keys associated with each category, a random guess 
within this group would result in 14% accuracy, almost twice 
as many as observed. 

These results suggest that KeyMap users retained more mem-
ory associated with unpracticed items than ExposeHK users, 
supporting H2. However, correct selections were suffciently 
rare to suggest that this memory was primarily related to the 
general area of the keyboard, rather than the actual key bind-
ing. 

H3: Selection Time 
Participants completed a total of 14,700 selection tasks. To 
analyze this data, we removed 183 outlier trials that were 
more than 3 standard deviations from the mean of their re-
spective technique (80 with ExposeHK; 103 with KeyMap). 
The selection times were log transformed due to a signif-
cant deviation from normality. The following analyses use 
the Greenhouse-Geisser correction where sphericity tests fail, 
resulting in fractional values for degrees of freedom. 

We found that KeyMap users improved their selection times 
with practice more than ExposeHK users (Figure 7). As ex-
pected, there was a signifcant main effect of BLOCK, with 
mean selection times decreasing from 5.4 s in Block 1 to 
2.6 s in Block 6 (F3.35,321.7 = 486.3, p < .001, ηG 

2 = .43). There 
was no signifcant main effect of TECHNIQUE on selection 
time (F1,96 = .968, p = .33, ηG 

2 = 0.008), with similar overall means 
of 3480 ms with ExposeHK and 3281 ms with KeyMap. 
There was a signifcant BLOCK × TECHNIQUE interaction 
(F3.35,321.7 = 5.78, p < .0001, ηG 

2 = .009). This interaction can be 
attributed to the cross-over effect shown in Figure 7: KeyMap 
selections were marginally slower than ExposeHK in Block 1, 
but became and remained slightly faster than ExposeHK by 
Block 3. However, Holm-Bonferroni-corrected Tukey post-
hoc tests revealed no signifcant TECHNIQUE differences in 
any BLOCK. Although these differences are not signifcant, 
this trend matches our suspicion that KeyMap would be slower 
than ExposeHK during initial selections (while users learn 
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Figure 7. Mean selection time per block by technique. Error bars are 
95% confdence intervals. 

command groupings), but slightly faster once these are known 
(due to improved memorisation). 

Shortcut Use and Error Rate 
The proportion of commands selected using the keyboard was 
almost identical for both techniques. KeyMap participants 
selected 96.2% with the keyboard and ExposeHK 96.3%, and 
a Mann-Whitney test confrmed that this difference was not 
signifcant (U = 1109, p = .34, η2 = 0.004). Mean error rates were 
also very similar between the two techniques, at 5.42% with 
KeyMap and 5.37% with ExposeHK (U = 1200.5, p = 1, η2 = 0). 

Subjective Ratings 
Participants were asked whether they found the shortcut sys-
tem useful or not. Only three KeyMap users did not fnd 
it useful (6%), compared to 10 with ExposeHK (20%). A 
chi-squared test found that this difference was nearly signif-
cant (χ2 = 3.1928, p = .074, φ = 0.18), suggesting that participants 
might have a subjective preference for KeyMap. 

After each session, participants were asked to estimate the 
number of shortcuts that they remembered as well as the num-
ber that they did not remember. These responses were similar 
for both interfaces, with identical medians of 6 remembered 
and 10 not remembered after the main session, and 5 remem-
bered and 10 not remembered after the follow-up session. 

DISCUSSION 
Our experiment tested three hypotheses about the memoriza-
tion and execution of shortcuts with KeyMap in comparison to 
ExposeHK, a state-of-the-art method for improving shortcut 
use. The results show that KeyMap increased shortcut vocabu-
lary immediately after a training session and maintained this 
beneft 24 hours later. KeyMap also assisted with incidental 
learning of shortcuts that users had not previously invoked. Fi-
nally, selection times provide some support for our hypothesis 
that KeyMap would initially be slower than ExposeHK (due 
to the need to identify the locations of command groupings), 
but ultimately leads to better performance due to KeyMap’s 
better support for shortcut memorization. 

Why Did KeyMap Improve Shortcut Memory? 
KeyMap’s improvement in the number of shortcuts memorized 
is most likely due to participants’ improved ability to leverage 



their spatial memory. Participants’ comments support this 
inference. In the post-questionnaire, in response to the ques-
tion “What features of the shortcut system were most helpful 
in memorizing shortcuts?”, 14 KeyMap users referenced the 
ability to use “location”. One participant noted “Being able 
to quickly see the shortcut when pressing shift in the loca-
tion it really was on my keyboard was helpful”, and another 
stated “having items group together in specifc areas on the 
keyboard. . . made it easier to remember where things would 
be.” 

These comments lend support to the use of natural mapping 
to improve memory. In KeyMap, these benefts apply to both 
expert and novice users. On one hand, skilled users are familiar 
with a keyboard layout, so showing shortcuts in this layout 
gives them helpful cues for spatial memory. On the other, 
novice users fnd it useful to see each command at its position 
on the keyboard, making it easier for them to fnd and rehearse 
shortcuts. 

We believe that other interfaces could achieve better memo-
rization by adopting Norman’s mapping. Norman’s goal is to 
externalize knowledge into the world by representing it in a 
natural, intutitive way. In order for this mapping to be natural, 
the representation must be strongly related to the knowledge 
it represents, and this mapping will always create strong cue-
target associations. It stands to reason that applying Norman’s 
mapping should improve memorability when applied to other 
interfaces. 

The incidental learning results suggest that KeyMap improved 
users’ ability to remember the approximate location of a key-
board shortcut within a region of the keyboard. Importantly, 
this fnding shows that KeyMap provides a mechanism to 
help users construct memories for shortcut command invoca-
tion methods, including those that they have not previously 
selected. While users are unlikely to issue shortcut com-
mands until they are confdent that their selections are correct, 
KeyMap’s guidance allows them to quickly fnd the correct 
key by conducting a visual search in the correct area of its 
visualization. Additionally, while completing this search, they 
can prepare to make the correct selection by moving a fnger 
to the corresponding region on the keyboard. 

Deploying KeyMap 
To show how KeyMap can be practically deployed, we im-
plemented it as a Chrome extension2. We chose a Chrome 
extension because it is cross-platform, it integrates with a va-
riety of web applications, and it is easy for users to try. As 
an initial demonstration, KeyMap supports native Chrome 
shortcuts, as well as commands for Slack and Overleaf. 

While our implementation comes with an initial set of com-
mands, the extension has a simple API for adding new short-
cuts from JSON confguration fles. This choice makes it 
simple to add shortcuts to support new websites. A more 
sophisticated system could allow users to easily install “plu-
gins” with packs of commands. We hope that including a 
2Download the extension: https://chrome.google.com/webstore/ 
detail/fpminkfnndfokkmoobbngdpnijbcajkl 

working implementation of KeyMap helps users become more 
productive. 

To make KeyMap useful in practice, it is important to group re-
lated commands together. In our experiment, we used coloured 
keys for this purpose, but this grouping may not be practical: it 
is diffcult to distinguish a large number of colors, and this is-
sue is worse for colour blind users. In real-world applications, 
designers might use several alternative grouping methods. One 
example is physically locating commands together, as with 
“cut”, “copy” and “paste”. KeyMap could even make these 
physical groupings explicit by adding separators around the 
groups. Other methods that still leverage the principles of 
KeyMap might be changing the line style surrounding a short-
cut to create a group, or creating similar iconography within 
each key. 

Larger Command Vocabularies 
Like Malacria et al., our experiment tested a small set of 13 
shortcuts, and we used shift as the only modifer. However, real 
applications typically have more shortcuts, using several mod-
ifer keys to achieve this larger vocabulary. Would KeyMap’s 
benefts persist with these larger command sets? 

As a frst step in this direction, we tried scaling our exper-
iment up to a larger set of 35 commands, each appearing 
once per block. We tested three conditions: KeyMap, Ex-
poseHK, and a baseline condition using standard linear menus. 
In a between-subjects experiment with 118 participants, we 
found that participants using KeyMap remembered a median 
of 6 commands, more than ExposeHK (2 commands) or the 
baseline (3 commands). However, we were suspicious of par-
ticipants cheating. In ExposeHK and the baseline, we noticed 
participants making many shortcut selections for commands 
they had never seen before. This command set was much more 
diffcult to learn than the smaller Zipfan distribution from the 
main experiment, and we suspect that the increased diffculty 
drove participants to cheat. Future work investigating larger 
command sets should carefully control the diffculty of the 
experiment. 

We believe that KeyMap’s benefts would also be maintained 
with multiple modifer keys. There are several ways to support 
these. The simplest solution is to only display the shortcuts 
that can be triggered with the currently held modifer key, but 
this would require users to cycle through modifers to search 
for shortcuts. This search process could be eased if each 
key in the visualization indicated when another modifer was 
available for that key. In general, we suspect that KeyMap’s 
memory advantages would be maintained if multiple modifer 
keys were used, resulting in long-term performance advan-
tages due to an improved vocabulary of shortcuts. However, 
we also suspect that initial performance would be worse than 
ExposeHK until users learned the command groupings. Fur-
ther work is needed to validate this suspicion. 

Limitations and Future Work 
Overall, our results indicate potential for KeyMap and, more 
broadly, its use of natural mapping to improve memory. How-
ever, beyond of scaling to larger command sets, future work is 

https://chrome.google.com/webstore/detail/fpminkfnndfokkmoobbngdpnijbcajkl
https://chrome.google.com/webstore/detail/fpminkfnndfokkmoobbngdpnijbcajkl


required to understand if KeyMap would still increase shortcut 
adoption and improve memory in practical use. 

Our experiment was conducted using a standalone interface 
and participants from Mechanical Turk. This was benefcial, 
as it helped to achieve the large sample sizes that are required 
when using a between-subjects treatment. While we believe 
this was an appropriate choice for a frst empirical investi-
gation, more work is required to understand how KeyMap 
can help other groups of users in a wider variety of settings. 
Methodological triangulation including lab and feld studies 
will help broaden the ecological validity of the interface. 

Our evaluation also treated KeyMap as a replacement of tra-
ditional linear menus. However, it could be used as an aug-
mentation to existing interface layouts (menus or toolbars), so 
users could choose whether to invoke KeyMap or not. We sus-
pect that users’ uptake of shortcut mechanisms in this setting 
would be much lower than indicated in our experiment. Again, 
further study is required to examine this variation. 

We used colour to group related commands in our experiment. 
This choice was necessary because ExposeHK uses menus to 
display the categories, but KeyMap does not. Adding colour 
allowed us to make a meaningful comparison by looking at the 
relative differences in selection times. However, colouring the 
interfaces might have decreased visual search time for both 
menus, making it diffcult to understand exactly how quickly 
users could select commands using KeyMap. For future work 
to measure this absolute selection time, it is important to study 
KeyMap’s effect in a real task setting. 

KeyMap also opens avenues for future interfaces. For example, 
KeyMap could be naturally extended for feedback by fashing 
the keys used in a shortcut after invoking the command, even 
if the command was invoked using a linear method. The ideas 
behind KeyMap might also work beyond 2D interfaces. Some 
menus in virtual reality interfaces are arranged in the shape 
of the controller; it would be interesting to see whether the 
benefts of Norman’s natural mapping persist when the display 
is only a 2D projection of the input device. 

CONCLUSION 
Keyboard shortcuts allow fast command execution, but they 
are seldom used because most users have a small shortcut 
vocabulary. We designed and evaluated a system called 
KeyMap to improve support for shortcut memorization and 
use. KeyMap achieves these benefts in a unique way: it lever-
ages Norman’s principle of natural mapping, which makes 
shortcuts more memorable by giving users more cues for spa-
tial memory. We evaluated KeyMap in comparison to Ex-
poseHK, a state-of-the-art interaction technique, and found 
that KeyMap users memorized more commands and showed 
more incidental learning without sacrifcing selection time. 
Designers can incorporate natural mapping into their inter-
faces to help their users become better users. 
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