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Abstract

Collaborative crowdsourcing tasks allow workers to solve more difficult problems than
they could alone, but motivating workers in these tasks is complex. In this thesis, we
study how to use payments to motivate groups of crowd workers. We leverage concepts
from equity theory and cooperative game theory to understand the connection between
fair payments and motivation. Based on findings from a systematic literature review, we
identify how the implications of equity theory relate to the Mechanical Turk ecosystem.
Then, we use a realistic audio transcription task to evaluate how theoretically fair pay-
ments affect crowd workers. Further, we carry out two experiments to find how people’s
perceptions of fair rewards differ from cooperative game theory’s fairness axioms. Our
findings have important implications for designing collaborative work and directing future
research on perceptions of fairness.
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Chapter 1

Introduction

Teamwork is crucially important to high-quality work. In organizations, work is over-
whelmingly structured around teams [48]. While coordinating groups of people can be
costly, teams of people bring together diverse experience and complementary skills that no
individual member could provide, allowing organizations to be more flexible and adaptable.
A similar emphasis on group-based work is also present in science [96]: over time, research
has shifted from an individual endeavour to a collective effort. Collaboration allows groups
of people to make better decisions and solve more complex problems than they could alone.

One field that has grown to incorporate group work is microtask crowdsourcing. Crowd-
sourcing platforms like Amazon Mechanical Turk allow human workers to complete tasks
that are difficult or impossible for computers. For example, a typical task might have
workers transcribe text from an image of a shopping receipt. Classically, these tasks have
been done by individual workers with no communication or cooperation, but collaborative
tasks have been used to solve new problems by relying on contributions from multiple
workers. These group-based tasks have had workers cooperate in a pipelined workflow
[7, 47], deliberate about their answers [13, 83], and brainstorm as a team [60, 101]. These
techniques allow crowdsourcing systems to solve more difficult problems by enabling inter-
actions between teams of workers.

To ensure that crowd workers do good work, it is crucial to keep them motivated. For
traditional, single-worker tasks, the question of worker motivation has been thoroughly
studied in the crowdsourcing literature. Workers are primarily motivated by monetary
rewards [41], and the impacts of different payment systems are well understood [67, 78, 30].
However, these findings may not transfer to collaborative tasks, where the problem of
motivating workers through payments is more complicated. When working in a team,
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workers can often see each others work, and this extra information may have a large
impact on their motivation. For instance, the simplest payment strategy of paying all
workers equally may not be suitable, as the most skilled workers could feel undervalued if
they know others are earning the same wages.

In this thesis, we focus on the problem of motivating groups of workers for collaborative
work. To understand this problem, we leverage concepts from both equity theory and
cooperative game theory. First, the main idea of equity theory [1] is that people believe
their outcomes, such as their wages or bonuses, should be proportional to their inputs,
such as the amount of work they contributed; these judgements are made by comparing
their inputs and outcomes to those of their teammates. These equity judgements are linked
to motivation. If people feel that their skills, effort, or time are not being recognized by
their rewards, they fix this equity balance by putting in less work. Based on this idea, we
investigate the impacts of fair payment divisions in collaborative crowdsourcing tasks.

While equity theory prescribes one type of payment division, cooperative game the-
ory [11] is another tool for understanding fair payments. In the context of transferable
utility games, the Shapley value [85] is a method for dividing rewards between a group of
cooperating agents. It satisfies four fairness axioms – symmetry, efficiency, null players,
and additivity – and it is the only reward division that does so. Thus, in Chapter 4, we
use both the proportional payments suggested by equity theory and the Shapley value as
theoretically fair payments, and we evaluate how both of these payments are perceived by
workers in a collaborative crowdsourcing task.

However, we do not take Shapley’s axioms for granted. Empirical work on cooperative
games has shown that people acting as impartial decision makers often violate the null
player axiom [21], rewarding players for being present even if they provide no value to the
group, resulting in rewards that are more “egalitarian” than the Shapley value. Further,
this prior work only focused on a restrictive set of games. In Chapter 5, we investigate
how people divide rewards in cooperative games, and we use our data to compare human
reward divisions to the Shapley value and its axioms.

This work lies at the intersection of two fields: we study how collaborative crowdwork
can be supported by understanding fair payment divisions, and we use this application
domain to ground the payment divisions prescribed by cooperative game theory. Thus,
this thesis makes three main contributions to the crowdsourcing and cooperative game
theory literature:

• First, we present a comprehensive literature review of existing collaborative crowd-
sourcing tasks. We note similarities and differences between these tasks by identifying
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the different types of information that workers have available to them. We use our
categorization to find tasks that rely on collaborative crowd work and to show when
equity theory’s implications apply to these tasks.

• Second, we carry out two experiments using a crowdsourced audio transcription task
to find how workers react to fair payments. In these experiments, we compare work-
ers’ perceptions of fairness when they are paid performance-based bonuses. Our
results, which show that the theoretically fair proportional payments and Shapley
values are recognized as being more fair than equal pay, inform the design of future
collaborative crowdsourcing tasks.

• Third, we perform an empirical comparison between human reward divisions and the
Shapley values in cooperative games. We use two experiments to study how people
select rewards while acting as impartial decision makers. In contrast with previous
work, we identify games where human rewards are unrelated to the Shapley values,
and we show that humans violate both the null player and additivity axioms. These
findings open a direction for future research on fairness axioms, helping artificial
agents encode human standards of fairness.

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of
crowdsourcing and describes theoretical methods for paying groups of workers fairly. Chap-
ter 3 reviews existing collaborative crowdsourcing tasks and their relationship to equity
theoretic concerns. Chapter 4 describes a pair of experiments using a collaborative crowd-
sourcing task to evaluate the effects of fair payments on crowd work. Chapter 5 details a
second set of experiments that investigate the differences between axiomatic definitions of
fairness and human-selected rewards. Chapter 6 concludes the thesis by summarizing and
proposing directions for future work.
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Chapter 2

Background

In this chapter, we describe existing crowdsourcing platforms and the factors that affect
worker motivation on these platforms. Then, we draw on concepts from social psychology to
demonstrate the importance of fair payments in collaborative crowdsourcing tasks. Finally,
we present a number of axiomatic definitions of fairness from cooperative game theory that
can also be applied to this type of work. These ideas provide a theoretical foundation that
we rely on in the remainder of this thesis.

2.1 Crowdsourcing

Crowdsourcing is the rapid mobilization of large numbers of people to accomplish global-
scale tasks [46]. One of the most prevalent microtask crowdsourcing platforms is Amazon
Mechanical Turk. On Mechanical Turk, requesters post work in the form of Human Intel-
ligence Tasks (HITs). Workers accept these HITs, complete them, and submit their work
to be reviewed by the requester. These HITs typically consist of short microtasks, which
are tasks that take seconds or minutes to complete, and requesters usually pay a reward
of a few cents for completing a task. Mechanical Turk acts as a marketplace, connecting
workers and requesters.

Mechanical Turk gives requesters access to a large, global workforce. Difallah et al. [22]
estimated the size of the worker population using capture-recapture techniques inspired
by ecology. Their analysis of 85,000 survey responses over a 28 month period suggested
that Mechanical Turk’s worker population has 100,000 to 200,000 unique workers, with at
least 2,000 workers active at any given point in time. They also found that, although the
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majority of workers are from the United States (75%), there is a long tail of workers from
other countries, including a significant number from India (16%). Finally, they showed
that the worker population renews over time: while many workers leave the platform, tens
of thousands of new workers arrive every year.

Using Mechanical Turk gives requesters the ability to use human computation for tasks
that are difficult or impossible for computers to complete. Hara et al. [28] presented data
collected through a Chrome extension from 2,676 workers completing 3.8 million HITs.
They found that the majority of workers’ tasks are “content creation”, such as transcrib-
ing or tagging audio clips, images, or videos. Other common tasks include interpreting
information (e.g., reviewing or rating images, articles or webpages) collecting data (finding
company contact information), and completing academic surveys. The large scale of Me-
chanical Turk’s workforce makes it possible to scale these tasks to an enormous extent. For
one prolific example, the ImageNet dataset [80] consists of approximately 1.3 million images
that were labeled by workers on Mechanical Turk. ImageNet had an enormous influence
on research in machine learning and computer vision, leading to technical developments
that would have been impossible without the huge scale of crowdsourced work.

We note that the term “crowdsourcing” has been used to describe many types of dis-
tributed work. In some situations, the crowd consists of a group of volunteers. Crowds
of volunteers write articles on Wikipedia [45], answer programming questions on Stack
Exchange and GitHub [92], contribute to citizen science efforts like Zooniverse [87], and
spread news about crises on Twitter [89]. Crowdsourcing techniques have even been used
to improve course materials for online classes based on students’ input [94]. Other plat-
forms, such as UpWork [15], use a workforce of expert freelance workers, such as graphic
designers and programmers. Motivation is an important problem in all of these forms of
crowdsourcing. However, in this thesis, we choose to focus on the problem of motivat-
ing workers through monetary payments, so we restrict our attention to paid, non-expert,
microtask crowdsourcing platforms like Mechanical Turk.

2.2 Worker Motivation and Pay

The problem of picking payments for workers on Mechanical Turk has been studied exten-
sively in the context of motivation. As Kaufmann et al. [41] found, monetary rewards are
one of the most effective sources of motivation for crowd work. They surveyed 431 workers
to find which factors of extrinsic and intrinsic motivation are most important to workers.
Their results show that, while intrinsic factors such as enjoyment and skill variety influence
the type of tasks that workers select, payment is the most important motivator.
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Mason and Watts [67] described one of the earliest studies relating financial incentives
and worker performance. In their experiments, they paid workers $0.01, $0.05, or $0.10 for
two different types of tasks. In the first task, workers arranged images from traffic cameras
in chronological order; in the second, workers completed word search puzzles. They found
that offering higher payments caused workers to complete more tasks, but had no reliable
effects on workers’ accuracy in either task.

Rogstadius et al. [78] extended this work by including an element of intrinsic motivation.
In their experimental task, workers counted the number of infected blood cells in a series
of images. They posted tasks with three levels of pay ($0.00, $0.03, or $0.10) and with two
different task backstories: one where the work was for a non-profit health organization,
and the other for a private pharmaceutical company. They found that offering higher pay
attracted more workers and caused workers to complete more tasks, but had no impact on
their performance, confirming Mason and Watts’ results. They also found that emphasizing
the importance of the work by mentioning a non-profit organization led to higher accuracy.

Harris [29] performed a preliminary study of performance-based bonuses. They used
two resume reviewing tasks, using ratings from an experienced HR hiring director as a
gold standard. They tested several types of incentives: they either doubled workers’ pay
for matching the gold standard, halved the pay for significantly different answers, or both.
Their data showed that workers spent more time on their tasks when they were offered
performance-based payments. The results also suggested that the positive incentives –
increased pay for correct answers – could lead to more accurate answers, but they did not
find conclusive evidence of this finding.

Yin et al. [97] tested the effects of performance-based bonuses, where workers only
received a bonus if their work met a pre-determined quality standard. They used two
types of tasks. In their button-clicking task, workers received a bonus for alternately
clicking between two buttons 400 times in 3 minutes. In their spotting-differences task,
workers received a bonus for successfully identifying all 5 differences between two similar
images. They found that workers put in more effort when their offered bonus was increased
over time, due to an anchoring effect. However, the magnitude of the performance-based
bonus alone did not affect work quality.

The most comprehensive work in this area is due to Ho et al [30], who explained the
variance in these previous findings. Through a series of four experimental tasks, they
found that performance-based payments improve work quality when three conditions hold.
First, the performance-based bonuses must be relatively large compared to the task’s base
payment. Second, the bonus criteria must push workers to do more work without appearing
to be unachievable. Third, the task must be effort-responsive: spending more time on the
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task must lead to better work. This last condition is not true for some common tasks such
as handwriting recognition, where workers can reach their best possible accuracy with little
effort.

To our knowledge, no prior work has investigated the effects of performance-based
payments for collaborative crowd work. In collaborative tasks, this problem becomes more
complex: workers can often see each others’ work, and this information may have a large
impact on their motivation. In the next section, we discuss how this complexity can be
tackled with the framework of equity theory.

2.3 Equity Theory

Worker motivation is more complex in collaborative tasks: the key difference is that it
is easier for workers to compare themselves against each other. Thus, payments that are
sensible for individual work might not translate easily to collaborative work. For instance,
the most skilled workers in a team might feel undervalued if they are paid the same amount
as their teammates. This idea is formalized by equity theory.

Equity theory [1] states that humans compare themselves to other people to decide
whether they are being treated fairly. Humans believe that their outputs are equitable
when

Oself

Iself
=
Oother

Iother
,

where I is one person’s perceived input and O is their output. In other words, this rela-
tionship states that somebody that puts in twice as much work as their colleague should
be rewarded twice as much. These outputs typically refer to some type of tangible reward,
such as wages or bonuses. However, the inputs are not clearly defined. Depending on the
situation, the inputs could be related to the amount of time spent working, the quantity
of work done, or the quality of the work.

When workers do not believe that their outputs are equitable, they change their inputs
to fix the discrepancy. In other words, overpaid workers will put in more effort, and
underpaid workers will put in less effort. Workers might even quit their work in response
to extremely unfair outcomes. In order to keep workers motivated in collaborative work, it
is crucial to ensure that they do not feel underpaid compared with other members of the
group.

Equity judgements are subjective, and it is important to recognize when workers’ equity
judgements are biased toward themselves. Ross and Sicoly [79] investigated these biases
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through a series of five psychological experiments. They found that, in general, people
remember more facts about their own work than their teammates’ work, especially if they
believe that their team was successful. Thompson and Loewenstein [90] presented simi-
lar findings from an experiment where participants role-played as negotiators bargaining
over a strike. Their participants were able to recall more facts favouring themselves than
their opponents. These egocentric biases could make it difficult to find payments that are
considered to be equitable by all of the workers in a team.

In order to make equity judgements, workers also need enough information to make
comparisons with their coworkers. While workers have knowledge of their own inputs and
outputs, in some situations, they may not be aware of others’. In particular, complex
collaborative systems sometimes hide information about each member’s contributions to
the team, and wages are not always transparent. We discuss when this information is
available in the context of collaborative crowdsourcing tasks in Chapter 3.

Equity theory is also related to the concept of organizational justice [17]. Organiza-
tional justice decomposes the idea of fairness into four distinct components. Three of these
components – procedural, interpersonal, and informational justice – refer to the procedures
being applied, the level of respect that workers receive, and the amount of transparency that
workers see when an organization is making decisions. However, the final component is dis-
tributive justice, which describes the fairness of workers’ outcomes, and is directly related
to equity theory. Studies with employees and students have also shown that distributive
justice is related to workers’ satisfaction about their outcomes [17]. This connection be-
tween organizational justice and equity theory provides additional measures that can be
used to evaluate workers’ perceptions of fairness.

2.4 Axiomatic Definitions of Fairness

Rather than describing fair payments through the psychological viewpoint of equity theory,
an alternative approach is to encode fair outcomes through a number of mathematical
axioms. This approach is best described in the language of cooperative game theory. In
this section, we give an overview of cooperative games and fair values in these games; we
defer precise, mathematical definitions of these values to Chapter 5.
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Coalition Reward

(nobody) 0
Alice 20
Bob 20
Charlie 0
Alice, Bob 60
Alice, Charlie 20
Bob, Charlie 20
Alice, Bob, Charlie 60

Table 2.1: An example of a transferable-utility game with 3 players named Alice, Bob,
and Charlie. Alice and Bob are symmetric: they make the same marginal contribution to
every coalition. Charlie is a null player : he contributes nothing to any of the coalitions.

2.4.1 Values for Cooperative Games

In cooperative game theory, a transferable-utility game consists of a fixed set of players
and a characteristic function. The characteristic function describes the amount of reward
that every subset of players (every coalition) could earn by working together. An example
of a transferable-utility game is shown in Table 2.1. Then, one of the main questions of
cooperative game theory is: if all of the players choose to work together (forming the grand
coalition), how should they divide their team’s reward among themselves? A value is a
mapping from characteristic functions to tuples of rewards, assigning a reward to each of
the players. For example, one of the simplest possible values is the equal division value,
which divides the grand coaltion’s reward evenly between all of the players.

One of the most well-known values is the Shapley value [85]. The Shapley value has
a simple interpretation. A player’s marginal contribution to a group is the amount of
extra reward that the group earns by including the player; the Shapley value simply gives
each player their average marginal contribution, with the average taken over all possible
permutations of the players. This value is characterized by four fairness axioms:

• Efficiency : all of the reward earned by the grand coalition is divided across the
players.

• Symmetry : if two players make the same marginal contributions to every coalition,
then they receive the same reward.
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• Null players : if a player makes no marginal contributions to any coalition, then they
receive no reward.

• Additivity : when any two games are combined by summing the coalitions’ values, the
value of the combined game is the sum of the values for the individual games.

In fact, the Shapley value is the unique value that satisfies all four of these axioms. Thus,
if these four axioms can be said to capture properties of fair reward divisions, then the
Shapley value can be considered as an axiomatically fair value.

However, several authors have proposed alternative axioms that could be more rep-
resentative of fair reward divisions. In particular, there are several modifications to the
Shapley value that result from replacing the null player axiom while keeping the efficiency,
symmetry, and additivity axioms. The first of these is the family of egalitarian Shapley val-
ues [36, 10], which are the convex combinations of the Shapley value and the equal division
value. Egalitarian Shapley values satisfy a weaker version of the null player axiom: null
players earn non-negative rewards. Another alternative is the solidarity value [74], which
modifies the Shapley value by sharing players’ marginal contributions with the other mem-
bers of the group. The solidarity value gives players no reward if every coalition containing
them earns no reward. Finally, these ideas are generalized by the family of procedural
values [61, 77], which allow different levels of “egalitarianism” to be applied to different
coalition sizes. In a sense, these alternative values can reward players for being part of a
group, even if they make no tangible contribution to the group.

Transferable-utility games can also be thought of as bargaining processes between
groups of rational players. This framing leads to the idea of stable reward divisions, where
no players have any incentive to deviate from their bargaining outcome. Reward divisions
motivated by stability include the core and its generalization to the least-core, the nucle-
olus, the kernel, and the bargaining set [11]. However, these reward divisions are much
more complex than the axiomatic values described above. For instance, many games have
no stable outcomes, so the core is empty in these games. In this thesis, we choose to leave
these stability concerns and instead focus on axiomatic definitions of fairness.

2.4.2 Empirical Studies of Cooperative Games

A separate line of previous work has studied how humans act when participating in co-
operative games. The earliest of these studies is due to Kalisch et al. [39], who described
a number of experiments where participants bargained face-to-face in a series of 4- to 7-
player games. They found that players were generally willing to split their rewards equally,
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and players with the most power in a game rarely took full advantage of their position.
However, their main focus was on the bargaining process, such as the speed of the nego-
tiations, the effects of having participants sit around a table, and the resulting coalition
structures.

In the following years, other experimental work had a similar focus to Kalisch et
al’s studies. Kahan and Rapoport [38] summarized many of these early results, and
Maschler [66] published a comprehensive survey of these experimental papers. Most of
this work is characterized by two features. First, it places an emphasis on the bargaining
procedure: participants acted as players in the games, bargaining with others about form-
ing coalitions and splitting rewards. With this emphasis, these experimental results are
difficult to compare to the Shapley value axioms. Second, it focuses on zero-normalized
games, where none of the 1-player coalitions can produce any value. These patterns have
continued in more recent work in this area, which has focused on how the coalition struc-
tures are affected by limited communication [8] and innovative bargaining protocols [73],
or how artificial agents can bargain effectively in these games by using supervised learning
to predict whether people will accept an offer [102].

One experiment by Kahan and Rapoport [37] is particularly notable. Instead of using
zero-normalized games, they controlled the rank-ordering of the single-person coalition
values to either have the same order or the reverse order of the players’ bargaining power.
Their results show that the Shapley value is generally a good fit when all 3 players form a
single coalition together. However, their analysis also includes situations where only two of
the players formed a coalition, making it difficult to evaluate the accuracy of the Shapley
values.

The experiment done by De Clippel and Rozen [21] is the most relevant to our work.
In their experiment, a group of 3 “recipients” earned baskets of items by answering trivia
questions. These items had no value alone (for example, a left shoe), but could be valuable
when combined with another recipient’s basket (for example, making a pair of shoes). Then,
impartial “decision makers” saw how much value each group of recipients could earn and
chose how to divide these rewards. They conclude that humans select convex combinations
of the equal split and the Shapley value. To our knowledge, their work is the first where
the participants dividing the rewards are impartial to the divisions. However, their games
are zero-normalized, as the recipients could not earn any rewards alone, and it it is difficult
to tell how their findings would generalize to games that are not zero-normalized.

We note some parallels between our research and other empirical work. In classical
game theory, it is well known that humans deviate from concepts such as the Nash equilib-
rium; these deviations have been described and modelled in the field of behavioural game
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theory [9, 95]. Similar findings also exist in the fair division literature [25]. However, these
models are domain-specific and cannot be directly applied to cooperative games.

12



Chapter 3

Collaborative Crowdsourcing Tasks

In order to study how to pay groups of crowd workers, it is important to first understand
the types of collaborative work that they do. In this chapter, we perform a literature
review of existing collaborative crowdsourcing tasks. We characterize the different types
of information that workers see during these tasks and identify work that is only possible
with close collaboration. Then, we describe how this information allows workers to make
equity judgements about their payments. Finally, we explore how these existing tasks pay
groups of workers.

Before we begin, we first identify a precise definition of collaborative crowdsourcing.
We follow Malone and Crowston [62], who define collaboration as “peers working together
on an intellectual endeavor”. Based on this, we take collaborative crowdsourcing to include
any crowdsourcing task where work from multiple workers is used to produce a single result.
Note that this is quite a broad definition: for example, it includes systems where answers
from independent workers are aggregated without any interaction between the workers.

Note that collaborative tasks can also be competitive. To be precise, Malone and
Crowston [62] state that cooperation indicates situations where actors share the same goals,
while competition connotes one actor gaining from another’s losses. Group work typically
includes both of these elements: Davis [19] notes the extremes of pure cooperation or pure
competition are rare. Most group-based crowdsourcing tasks also fall into quadrants 1
(“generate”) and 2 (“choose”) of McGrath’s task circumplex [68]. While tasks in these
quadrants are primarily cooperative, they also include elements of competition.
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3.1 Literature Review

We first review the existing literature on collaborative crowdsourcing tasks. We use this
literature review to identify the different types of information that are available to workers
during collaborative tasks. These features allow us to characterize existing tasks into a
number of distinct categories, each embodying a different level of interaction between the
workers.

We performed our literature review using a snowball sampling process, which is a
standard procedure for literature reviews [55]. Our search was seeded with Bernstein
et al.’s Soylent [7]: as one of the first crowdsourced workflows, it represents one of the
earliest and most recognized collaborative tasks. Then, we iteratively reviewed references
in both directions by checking the reference lists and Google Scholar “cited by” lists. We
kept all papers that described a collaborative crowdsourcing task. This process resulted in
a total of 114 papers, the majority of which describe tasks for Mechanical Turk. We note
that a small number of these tasks are intended for other platforms, such as professional
crowdsourcing (e.g., Upwork) or citizen science (e.g., Zooniverse) platforms.

Through several rounds of informal iterative coding, we identified 4 factors that differ-
entiate these collaborative tasks from each other. Each of these factors describes one type
of information available to workers and the interactions that workers have during the task:

• See others’ work: Do they see work completed by other workers on the same task,
on an other task, or not at all?

• Aware of others: Do they know that other workers are involved in the task, or not?

• Identify others’ work: Can they identify which other workers did each part of the
work, or is the work anonymous?

• Freely interact: Can they have open, free-form conversations with other workers, or
not?

Note that not every combination of these factors is possible. For instance, workers cannot
identify others’ work if they cannot see others’ work. We used these four factors to classify
each paper based on the interface elements and flow of information used in their tasks.

The distinct categories that we discovered are shown in Table 3.1. We identified four
types of tasks that are relatively common, appearing in at least 10 publications. Charac-
teristics and representative tasks for each of these categories are:
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N Y N N 3 Aware of other workers
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S Y N Y 3 Anonymous chat
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N Y N Y 1 Solo work with chat room
O Y N Y 3 Workflows with chat
O Y Y Y 4 Professional workflows

Table 3.1: The categories of collaborative crowdsourcing tasks that we found in our liter-
ature review. For the See others’ work factor, workers can see others’ work for the same
task (S), another task (O), or not at all (N). For the other three factors, the collaboration
is either present (Y) or not (N).

• No information about others: Tasks that require input from multiple workers, but
do not have any form of interaction between the workers. This category does not in-
volve collaboration, but it is included for completeness. It does include some real-time
crowdsourcing tasks such as Adrenaline [6], where workers complete tasks simulta-
neously, but have no information about their coworkers.

• Workflows with no awareness: Each worker’s job depends on data from previous
workers, but the data’s source is not mentioned. For example, in the final step of
Soylent’s find-fix-verify workflow [7], workers are asked to confirm writing quality
without being told that the sentences were rewritten by other Turkers.
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• Anonymous shared interfaces: Workers contribute to a common, shared interface,
but cannot directly communicate or identify which workers performed each part of
the work. This approach has been used to control arbitrary GUIs [53], plan complex
itineraries [100], and write creative stories [43].

• Full collaboration: Workers closely interact as a team. Typically, this type of col-
laboration is achieved using a shared writing space, such as Google Documents or
Etherpads, or using a chatroom such as a Slack workspace. This type of task is often
associated with creative thinking [60], complex problem solving [101], or deliberation
[83, 14].

We also identified six types of collaboration that are less common, but still present in
previous work:

• Iterative tasks: A series of workers perform the same task, but are given previous
results as a starting point or for inspiration. This approach works well for image
segmentation [42, 40] and for some types of brainstorming [56, 86].

• Aware of other workers: The task interface mentions that other workers are complet-
ing the same task, but does not show their work. This technique is used to motivate
workers in tasks that otherwise consist of individual work [31, 88].

• Workflows with awareness of workers: This category includes workflows where the
presence of previous workers is explicitly mentioned [44, 27]. It also includes divide-
and-conquer workflows [50, 49], where workers decide how complex tasks should be
divided.

• Subcontracting: Morris et al. [71] proposed a workflow where workers choose to divide
complex tasks through “subcontracting”. They suggest that this system could include
real-time chat to facilitate assistance between workers.

• Structured deliberation and shared interfaces: Some deliberation workflows only allow
specific, structured communication between workers [13, 57]. Additionally, in some
shared interfaces, it is possible for workers to see what each member of group is doing
[52, 33].

• Anonymous chat: A small number of tasks involving chat interfaces show all messages
coming from the anonymous “crowd” user [32].
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Finally, we noted three other styles of collaboration that appear on other platforms,
but have not appeared in microtask crowdsourcing. These three categories allow workers
to communicate with each other, but vary the amount of cooperative work that they are
involved in.

To emphasize the utility of collaboration, we point out four types of problems that are
enabled using structured deliberation, shared interfaces, or full collaboration in this prior
work. First, while individual workers are capable of some simple creative tasks, several
creative writing tasks depend on workers having open discussions with each other [60, 82].
Second, workers are better at solving difficult cognitive tasks when they can communicate
with each other to understand their team’s strengths and weaknesses [16, 101]. Third,
when tasks have subjective or unclear guidelines, deliberation can help workers converge
on decisions [13, 83, 14]. Finally, collaborative environments help workers quickly divide
tasks on the fly when it is difficult to automatically divide a job into microtasks [52, 63].
These tasks, which are only possible through close worker interaction, highlight the power
of collaborative crowdsourcing.

3.2 Making Equity Judgements

Equity theory states that people compare themselves to their colleagues to decide whether
they are being treated fairly. These comparisons are related to motivation: when peo-
ple think they are undervalued, they restore the equity balance by putting in less work.
However, making these comparisons requires knowledge of others’ inputs and outputs. In
collaborative crowdsourcing tasks, when can workers make these types of equity judge-
ments?

First, workers must be able to see others’ inputs. The availability of this information
depends on the four factors that we identified about collaborative tasks. In tasks where
workers have no knowledge of each other, they cannot compare inputs. However, when
workers can see others’ work and are aware of others, they can get a sense of the range of
inputs that other workers are providing, giving them an approximate point of comparison.
When workers can identify others’ work, they can also make specific judgements about
individual teammates. These extra pieces of information help workers to judge whether
their payments are equitable in collaborative work.

Workers also need to have access to others’ outputs (payments) to make equity com-
parisons. This information is much more readily accessible than others’ inputs. Workers
often discuss their pay public forums, such as Reddit’s r/mturk or TurkerNation, or track
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their wages on task reviewing websites, such as Turkopticon [35] or TurkerView. Many
workers also rely on personal connections, and it is common for them to discuss wages [98].
These channels can give workers an idea of the payment range for a task.

Additionally, requesters can make this payment information transparent, allowing work-
ers to see their teammates’ exact rewards. Several authors have suggested that this added
transparency would be beneficial, advocating for Amazon to make this information visible
to workers. Martin et al. [64] concluded that additional market transparency would aid
in minimizing Turkers’ “work to make Turking work”, helping them focus on their tasks.
These impacts are magnified by the global nature of crowdwork [65]. Fieseler et al. [24]
also advocated for increased transparency about workers’ payments. They posited that this
information would combat feelings that requesters are being deceptive about their workers’
pay, making workers more loyal and improving trust and intrinsic motivation. Payment
transparency could also help workers cope with unclear instructions by helping them rec-
ognize work that requesters marked as high- or low-quality. Overall, making payment
information available would improve relations between workers and requesters, benefiting
both parties.

3.3 Existing Payment Systems

Existing collaborative crowdsourcing tasks have used a variety of mechanisms to pay groups
of workers, and these mechanisms are generally quite ad-hoc. Here, we discuss this wide
range of payment methods.

The majority of collaborative tasks assign the same payment to every worker in a team.
The most common method is to pay all workers a fixed, flat reward for completing a HIT,
regardless of their performance. Some work has also given performance-based bonuses to
teams, with each member receiving an equal bonus. Equal bonuses have been used to
reward teams for converging to the correct answer [16], resolving disagreements [83], or
performing above-average [82, 101]. These types of payment systems do not recognize
differences between workers’ contributions.

A number of tasks have paid workers based on their level of participation. These
payments are used to incentivize workers to contribute to their group. In these tasks, the
number of actions [54, 33], the amount of time spent in the interface [63], or the amount
of chat interaction [59] have been used as participation metrics. It is difficult to ensure
that these payments motivate workers to complete high-quality work. For instance, paying
workers bonuses solely for suggesting chat messages [33] could cause workers to submit
many low-effort suggestions.
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Other tasks have paid different bonuses to team members based on the quality of their
work in a variety of different ways. With ground truth answers available, some tasks
have paid bonuses to individual workers for selecting the correct answer [23, 14]. Huang
and Fu [31] found that paying bonuses to workers who outperformed their partner could
also lead to increased effort. Without access to ground truth, these payments become more
complex. In these cases, bonuses have been calculated based on workers’ level of agreement
with the crowd [53], the influence of their work on an algorithm’s output [51, 40], or the
subjective judgements of their teammates [81]. In general, these payments are ad-hoc:
there is no existing systematic method of paying groups of workers based on the quality of
their work.

Finally, some tasks have had workers take on distinct roles within their teams. Previous
work has paid bonuses to workers for acting as a team lead [81] or a manager [101].
Reputation systems have also been used to give skilled workers access to higher-paying
tasks [93]. Here, workers who take on more pivotal or influential roles are rewarded for
their extra work.
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Chapter 4

Fair Payments for Collaborative
Crowd Work

In Chapter 3, we argued that equity considerations are important for motivating workers
in collaborative crowdsourcing tasks. In this chapter, we aim to understand the practical
importance of these equity theoretic issues in the Mechanical Turk ecosystem. We leverage
ideas from equity theory and cooperative game theory to motivate two types of fair pay-
ments. Then, we use two experiments to evaluate how perceptive workers are to fair and
unfair payments. We conclude the chapter by discussing the implications of our results for
future collaborative crowdsourcing tasks.

4.1 Motivating Groups with Fair Payments

Workers on Mechanical Turk are primarily motivated by monetary rewards [78], and the
impacts of various payments are well understood for individual work [30]. However, the
problem of motivating workers with payments is more complex when workers collaborate:
in these situations, there is an additional issue of choosing payments that workers perceive
as being equitable. For example, paying all workers in a team equally might make the
best-performing workers feel undervalued for their work. In this section, we detail how
workers can make equity judgements on Mechanical Turk, propose two theoretically fair
payment methods, and describe how to measure workers’ perceptions of fairness.
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4.1.1 Fair Payments

In this work, we focus on a specific set of payment systems. We suppose that a requester
posts a group-based task where a team of workers earns a collective payment together. This
payment could be fixed, as in many existing tasks, or it could include a performance-based
bonus for the team. Then, the challenge of this system is to divide the group’s payments
among the individual workers.

The most basic payment method is to simply pay all workers equally. This method is
the default in micro-task crowdsourcing: usually, workers received a fixed, pre-determined
payment for submitting a task. However, equal payments do not recognize varying levels
of skill and effort between workers in the group. Thus, we use equal payments as our
control, and we propose two alternative group payment methods based on concepts from
the literature.

The first alternative is to pay workers according to equity theory. In order to ensure
that each equity judgment is satisfied, the ratio of each worker’s output to input must be
equal. This constraint leads to proportional payments, where the pay for worker i is

Oi = c · Ii,

where c is the amount of pay per unit of work. We note that there is still some subjectivity
in the measurement of one unit of work, as the input I could depend on several different
metrics, such as work quality or quantity, or time spent on the task. In our experiments,
we choose to measure workers’ inputs by the quantity of correctly finished work.

A second type of fair payment is the Shapley value described in Chapter 2.4.1. A
transferable utility cooperative game consists of a set of players N and a characteristic
function v(C) which describes the amount of reward that every possible group of players
could earn by working together in a coalition C ⊆ N . Then, the Shapley value divides the
team’s total reward v(N) between the players by giving player i a reward of

φi =
∑

C⊆N\{i}

|C|!(|N | − |C| − 1)!

|N |!
(v(C ∪ {i})− v(C)) .

Intuitively, this is the average amount of value a player contributes by joining any possible
coalition. This reward division satisfies four fairness axioms – efficiency, symmetry, null
players, and additivity – and it is the only reward division that does so. Note that the
value of these coalitions can be purely hypothetical. In our tasks, workers collaborate as
if they are a member of the grand coalition N , and they have no control over this team
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structure: they cannot choose to form a smaller coalition by removing their teammates
from the coalition.

It is important to note that these theoretical methods cannot be applied to all types
of work: both of them require a clear definition of workers’ inputs. In some crowdsourcing
tasks, there are no straightforward ways to compare workers. One example is in deliber-
ation tasks, where describing an individual worker’s contributions would require a deep
understanding of the deliberation process. In this type of work, an alternative method
for payment division is to ask workers how valuable their teammates are. Algorithms for
combining workers’ subjective reports have been studied in the social choice literature [25].
However, these methods must recognize workers’ conscious or unconscious biases toward
themselves [79, 90] and stop workers from colluding with each other to increase their pay-
ments. We discuss how future work can investigate these worker-determined payments in
Chapter 6.2.

4.1.2 Measuring Perceptions of Fairness

In order to evaluate these theoretically fair payments, we need a method for measuring
workers’ perceptions of fairness. One way to compare group payments is to explicitly
ask workers whether their payments are fair. Organizational justice is a construct that
measures employees’ perceptions of fairness in a workplace. Colquitt [17] summarized
this literature by describing four different components of justice and a set of questions
designed to measure each of these components. One of these components is distributive
justice, which specifically focuses on the fairness of workers’ outcomes. Colquitt showed
that distributive justice is correlated with satisfaction: workers tend to be most satisfied
with their outcomes when they feel that the distribution is equitable.

However, humans are not perfect at recognizing fairness: in fact, they are often signifi-
cantly biased toward themselves [69]. There are multiple reasons for this effect. One reason
is that people believe that their work is more valuable because they remember more facts
about their own work than their colleagues. Another reason is that people may react more
strongly to being underpaid than to being overpaid. Recognizing these biases is central to
understanding the whole picture of workers’ fairness perceptions.
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Figure 4.1: The audio transcription interface. Workers listened to short audio clips and
typed the words they heard in real time. Each audio clip ended with 7 seconds of silence
to allow workers to finish typing.

4.2 Study 1: Performance-Based Bonuses

In the previous section, we defined proportional payments and Shapley values, and we
showed that these payments should be perceived as being more fair and should elicit
more worker effort than equal payments. We performed a crowdsourced study to examine
whether these effects can be observed in a real collaborative task. Specifically, this study
attempts to answer three questions:

• Question 1: Do workers perceive proportional and Shapley value payments as being
more fair than equal payments?

• Question 2: Are workers’ fairness perceptions biased toward themselves?

• Question 3: Do workers put in more effort when they are paid fairly?

4.2.1 Method

To answer our three questions, we had workers complete a collaborative audio transcription
task. We split performance-based bonuses between teams of workers using various bonus
divisions, and we evaluated workers’ fairness perceptions and performance levels based on
these payment methods.
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Participants

We hired participants from Mechanical Turk. We posted HITs with the title “Transcribe
audio with a team of workers” and offered a base payment of $1.75. In the HIT instructions,
we estimated that the HIT would take approximately 25 minutes, and we stated that
workers would receive a performance-based bonus with a typical value of $1. We required
workers to have at least 1000 approved HITs with a 95% or higher approval rate.

Teams

After workers accepted the HIT, we placed them into a ‘virtual’ team with two previous
participants. We selected these teammates by drawing randomly from the pool of workers
that had finished the experiment. To initialize this pool of workers for the first participants,
we used data from workers that completed an earlier exploratory version of the experiment.
We ensured that workers could only be selected as teammates twice. We also informed
workers that their data may be re-used to serve as teammates to other workers in future
batches of HITs. It was clear to the workers that their teammates had already completed
the task, and were not currently using the interface.

Task

For our experimental task, we used a real-time audio transcription task based on Scribe
[51]. Workers were not allowed to pause or replay the audio, as if the transcript was
required in real time. We have several reasons for using this type of task. First, it is a
difficult task, and workers need to focus to produce high-quality transcripts. Second, it
is impossible for a single worker to produce a perfect transcript, motivating the need for
multiple workers to complete the same task. Third, it is easy to learn, as many workers are
familiar with regular audio transcription tasks. Finally, it is realistic: this interface could
be used for a real-time captioning task. Our transcription interface is shown in Figure 4.1.

Procedure

In the experiment, workers first filled out a consent form and completed an interactive
tutorial about the interface. Then, they performed 14 rounds of the task. In each round,
they transcribed a short audio clip that we manually selected from podcast episodes.1 We

1We used podcasts from http://freakonomics.com/.
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Figure 4.2: The bonus payment screen, showing an example of one worker’s transcript.
Workers saw the full text that their teammates typed, how these transcripts compare to
the ground truth, and the exact bonus that each teammate received. (Workers could see
all three team members’ transcripts; to save space, we only show one here.)

used podcasts for our audio clips because there were high-quality transcripts available as
a source of ground truth. The audio clips varied from 21 to 31 seconds with a median
length of 28 seconds. We added an additional 7 seconds of silence to the end of each clip
to allow workers to finish typing. We processed each word that workers typed by removing
all punctuation and converting the text to lowercase. Then, at the end of each audio clip,
we compared workers’ transcripts to the ground truth with a word-level Myers diff [72],
which allowed us to check whether workers typed each word correctly.

Bonuses

After each audio clip, we showed workers how well each member of their virtual team
performed. We summarized each worker’s performance by displaying both the number of
words typed and the number of correct words. We also showed workers the full diff output,
with correct words in black, incorrect words in red, and untyped words in gray, allowing
them to interpret these results. Next, we counted the number of words in the ground
truth transcript that were correctly typed by at least one worker. We calculated a total
bonus payment of 5 cents for every 10 words that the team collectively typed correctly.
We selected this bonus scale so a typical group would earn a bonus of 20 to 30 cents per
round. The payment screen is shown in Figure 4.2.
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After calculating the group’s bonus, we divided it between the three workers. We placed
teams into one of four experimental conditions:

• Equal: We gave each worker one third of the group’s bonus. This method is the
control, as it is similar to the default of paying a fixed HIT reward.

• Proportional: We counted the number of words that each worker typed correctly.
Then, we gave each worker a bonus proportional to the number of correct words that
they typed. This method is fair according to equity theory.

• Shapley: We computed the bonuses that each of the 8 possible subsets of the
workers would have earned by collaborating on the task. Then, we paid workers with
the Shapley values, using these bonuses as the characteristic function. This method
is fair according to cooperative game theory.

• Unfair: We gave 50% of the bonus to the worker who typed the smallest number
of words correctly, and we gave 25% of the bonus to the other two workers. We
used this method as a manipulation check to understand how workers would react to
payments that are clearly unfair.

In all four cases, we rounded bonuses down to the nearest cent. We displayed the transcripts
and bonuses to workers in a payment screen at the end of each round, shown in Figure 4.2.
Finally, we asked workers to rate the division of bonuses as ‘Fair’, ‘Neutral’, or ‘Unfair’
before proceeding to the next audio clip.

Post-Study

After transcribing all 14 audio clips, workers filled out a post-study survey. In the survey,
we asked five 5-point Likert scale questions about the bonus payments. We adapted these
questions from Colquitt’s distributive justice and satisfaction measures [17]. Specifically,
we asked workers whether their payments were appropriate, justified, acceptable, and sat-
isfying, and whether the bonuses reflected the effort they put into the task. We also asked
workers about their demographics, how they selected their fairness ratings, whether they
enjoyed the task, and their feelings about working in a group with other workers. Lastly,
after workers submitted the HIT, we granted bonuses to all three of the team members –
both the participant and the two virtual teammates.
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Figure 4.3: Workers’ fairness ratings for each of the 14 rounds of the experiment. Workers
in the Proportional and Shapley conditions rated their payments as being more fair
than workers in the Equal or Unfair conditions.

Measures

Overall, we controlled two independent variables. The payment condition (Equal, Pro-
portional, Shapley, or Unfair) was a between-subjects variable, and the round number
was a within-subjects variable, with each worker completing all 14 rounds of the task. For
dependent variables in each round, we measured the number of words that each worker
typed, the number of these words that were correct, and their fairness rating (fair, neutral,
or unfair). We also recorded workers’ responses to the post-study questions, including their
justice ratings and their responses to the open-ended survey questions.

4.2.2 Results

A total of 132 workers completed the HIT. We removed 2 workers who typed 0 words in
the first round of the task. The number of workers in each condition varied from 28 to 38
workers; we confirmed that these conditions were not significantly unbalanced with a chi-
squared test (p = 0.65). Workers typed an average of 29.23 words per round (σ = 10.55),
with 24.48 of these words being marked as correct (σ = 9.87). In total, they earned an
average bonus of 99.41 cents (σ = 34.82).
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Figure 4.4: Fairness ratings for each condition, split by workers’ ranking in the team. The
best worker in each round has a ranking of 1, and the worst has a ranking of 3.

Fairness Ratings

Each worker submitted one fairness rating for each of the 14 rounds in the main experiment.
These ratings are plotted in Figure 4.3. This plot shows that workers are most likely to rate
their payments as fair in the Proportional and Shapley conditions. To confirm these
differences, we fit a proportional odds model to these ratings using the workers’ conditions
as a factor. This model showed that ratings in the Equal condition were significantly
more negative than the Proportional (p < 0.001) and Shapley conditions (p = 0.002),
but not significantly different from the Unfair condition. Thus, the answer to our first
research question is yes: workers do recognize theoretically fair payments as being more
fair than equal payments.

Worker Bias

We also investigated the amount of bias in workers’ fairness ratings. To do this, we split
workers’ ratings across all rounds into three groups: whether they were the best, the
middle, or the worst worker in their team for each round. The distribution of ratings for
each condition and team position is shown in Figure 4.4. This plot suggests that workers’
perceptions of fairness change based on their abilities, relative to their teammates.

We confirmed these biases by adding a measure of the workers’ relative skill levels to
our proportional odds model. For each round, we calculated the skill difference between
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the participant and their two teammates as

Skill Difference = 2 ·Words Correctworker

−Words Correctteammate1

−Words Correctteammate2.

This quantity is positive when the participant types more correct words and negative when
they type fewer correct words than their teammates. After adding this factor to the model,
the results showed that Skill Difference had a negative effect in the Equal (p = 0.006)
and Unfair (p < 0.001) conditions: workers with more skill than their teammates thought
that these payments were less fair. On the other hand, it had a positive effect in the
Shapley condition (p < 0.001), where workers felt their pay was more fair when they had
more skill than their teammates. Finally, Skill Difference had no significant effect in
the Proportional condition.

Justice Ratings

Workers’ answers to the five post-survey Likert scale questions had a high level of internal
reliability (Cronbach’s α = 0.92). We aggregated these answers into a single justice score
for each participant by taking the average of the five answers. The resulting justice scores
are shown in Figure 4.5. This boxplot shows that the score distributions are not the
same: workers in the Proportional and Shapley conditions never give very low scores.
However, the median scores in the Equal, Proportional, and Shapley conditions are
quite similar.

We used non-parametric statistics to analyze these ratings.2 A Kruskal-Wallis test
revealed that the condition had a significant effect on the justice scores: H(3) = 18.42,
p < 0.001. We performed post-hoc Mann-Whitney tests with a Holm-Bonferroni correc-
tion and found significant differences between the Proportional and Unfair conditions
(p < 0.001) and between the Shapley and Unfair conditions (p = 0.01). All other com-
parisons were not significant. This analysis shows that workers responded more favourably
to the theoretically fair payments than to the unfair payments.

The differences between workers’ justice scores in each condition were quite small. This
effect contrasts with the fairness rating analysis, where the differences between the four
conditions were more clear. This effect may be caused by the timing of these questions.

2We first fit a one-way ANOVA model to the ratings, but a Shapiro-Wilk test showed that the residuals
were not normally distributed (p < 0.05).
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Figure 4.5: A boxplot of workers’ justice scores in each of the conditions. Workers had
higher justice scores in the Proportional and Shapley conditions than in the Unfair
condition; no other comparisons were significant.

Table 4.1: Workers’ average change in performance between the first and the last round.
Workers in the Proportional and Shapley conditions improved more than in the
Equal condition, but no comparisons were significant.

Condition Words Typed Words Correct

Equal m=4.03, σ = 5.10 m=4.97, σ = 5.03
Proportional m=5.43, σ = 6.33 m=5.93, σ = 5.14
Shapley m=6.82, σ = 6.54 m=7.30, σ = 6.75
Unfair m=3.87, σ = 6.16 m=4.68, σ = 6.95

In the post-survey, workers may have considered their bonus payment for the entire ex-
periment and answered whether it is fair, compared to typical Mechanical Turk wages.
As our task paid more than the median wage on Mechanical Turk—approximately $2 per
hour [28]— workers may have tended to answer more positively than expected. Alterna-
tively, workers may have been hesitant to select the “extreme” answer of 1 for the justice
questions.

Effort

We recorded two performance metrics in each round: the number of words each worker
typed and the number counted as correct. These metrics are affected by many factors,
including the length and difficulty of the audio clips, as well as the workers’ skill and effort
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levels. We chose to consider each worker’s change in performance between the first and
last rounds. Comparing these changes between conditions allows us to control for workers’
skill levels, isolating their effort and learning rates as they become accustomed to the
interface and style of the audio clips. The average changes are shown in Table 4.1. These
values suggest that there may be a small difference in performance improvements between
the conditions, with workers improving by 1 to 3 more words in the Proportional and
Shapley conditions. With workers averaging approximately 24 words per audio clip, an
improvement of this size might be practically relevant for large-scale tasks with hundreds
or thousands of HITs.

To analyze these differences, we fit two binomial regression models: one to Words
Typed and another to Words Correct. In both of the models, we fit the workers’ final
round performance, using their condition and first round performance as factors. For both
models, we found a main effect of first round performance (p < 0.001), but no main effects
of condition or interaction effects. In other words, we could not detect any significant
differences in performance changes between the conditions. To validate this result, we
compare our results to previous work on bonus payments for crowdsourcing tasks. Ho
et al. [30] found that workers corrected 1 additional error out of 12 when they were paid
with appropriate bonuses. This improvement – an increase of less than 10% – was only
detected with large samples of up to 1000 workers due to large variances in workers’ skill
levels. We suggest that studying workers’ effort requires more accurate measurements of
their baseline skill and tasks with less variation in their individual performance.

Survey Responses

Workers had a variety of explanations for their fairness ratings. Many workers mentioned
making direct comparisons between the number of words or accuracy of their teammates.
Others explicitly referred to the effort that they put into the task. Another common
theme was the difficulty of the task: several workers were surprised that real-time audio
transcription was so difficult. In particular, workers who thought they performed poorly
often said that they were happy to get any bonus at all. We note that these feelings might
affect workers’ opinions about their payments: if they believe that they did poorly in the
task, then they might be less critical of their bonuses.

Workers had diverse opinions about how enjoyable the task was. Negative comments
tended to mention how frustrating, difficult, tedious, or weird the task was. Positive com-
ments described the task as fun, challenging, or different from usual HITs. Workers were
also split about the competitive aspect of the task: some workers enjoyed the competition,
while others thought it was stressful to compare themselves against their team.
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Many workers were positive about the idea of working in a team. They described it as
being motivating and fun, while helping them to earn larger bonuses. They also mentioned
that having multiple workers do the same task can make for useful feedback, allowing them
to learn from each other. The negative comments argued that teamwork was more stressful,
and some workers disliked the idea of relying on others. In this vein, some workers said
that they would enjoy teamwork as long as their teammates were better than them.

4.3 Study 2: External Ratings

In our first study, we examined how workers respond to different payment methods for
collaborative work. Now, in our second study, we used an independent group of workers
to review the bonus payments from the first study. We used this second set of opinions to
look for additional biases in the original workers’ fairness ratings.

4.3.1 Method

Participants:

We hired participants from Mechanical Turk by posting HITs with the title “Review work
done by other workers”. We offered a HIT payment of $1.50 with no bonus. The HIT
instructions gave a time estimate of 12 minutes. We required workers to have at least 1000
approved HITs with a 95% or higher approval rate. We also ensured that workers who
completed the first experiment could not participate.

Task:

In the second study, workers did not complete any audio transcriptions. Instead, we showed
them transcripts from previous teams of workers and asked them to rate how fair the bonus
payments were. We used the same bonus payment screen except for minor modifications
to the text (e.g., we changed “you and your teammates” to “the workers”).

Procedure:

After workers accepted the HIT, they accepted a consent form and completed a tutorial. In
the tutorial, we explained the real-time audio transcription task so that workers understood
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the difficulty of the work. We also showed workers the bonus payment screen and asked
comprehension questions about the transcript displays and bonus divisions. Then, workers
were shown a total of 16 rounds from the audio transcription tasks. For each worker,
we picked 3 random rounds from each of the 4 payment divisions. We also selected 1
fixed round for each payment division to show to every worker. These 16 rounds were
randomly ordered. For each round, they clicked on one of three buttons, labelled “Fair”,
“Neutral”, and “Unfair”. As an attention check, we randomized the positions of the “Fair”
and “Unfair” buttons in every round.

At the end of the study, workers filled out a post-study survey. We asked about their
demographics, their reasoning for their fairness ratings, and whether they would like to
rate or be rated by other workers in crowdsourcing tasks. Finally, workers submitted the
HIT.

4.3.2 Results

A total of 79 workers completed the HIT. We removed 16 workers that averaged less than
5 seconds per round, leaving 63 workers. After this filtering step, we did not find any
workers that clearly ignored the task instructions. For clarity, in this section we refer to
the new participants as the external raters, and we refer to the participants from Study 1
as the original workers.

Fairness Ratings:

Workers submitted a total of 1008 ratings: 756 on the randomly selected rounds and 252
on the fixed rounds. We found that the original workers’ ratings on the 4 fixed rounds
that we selected were not representative of typical ratings in each condition, so we chose
to focus only on the randomly selected rounds. The aggregates of these ratings are shown
in Figure 4.6. This plot suggests that raters were generally more critical than the original
workers, rating “Unfair” more often. This effect is strongest for the Equal and Unfair
payments.

We first analyzed the external raters’ ratings alone for each condition. To do this, we fit
a proportional odds model to the ratings using only the payment method as a factor. This
model shows significant differences between the Equal payments and each of the other
three payment methods (all p < 0.001). Post-hoc tests with a Holm-Bonferroni correction
showed significant differences between each of the conditions (p = 0.002 for Proportional
– Shapley; all other comparisons p < 0.001). The directions of these post-hoc tests show
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Figure 4.6: Fairness ratings from the original workers in study 1 (left), compared with the
external raters in study 2 (right). Raters were more critical of the Equal, Shapley, and
Unfair payments.

that the Proportional payments were rated as the most fair, followed by Shapley
payments, then Equal payments, with Unfair payments being rated as the least fair.

We also compared the original workers’ fairness ratings with the external raters’ to
check for differences between these two groups of workers. For each condition, we per-
formed a paired Wilcoxon signed-rank test between the two sets of ratings. These tests
showed that the external raters found the payments less fair than the workers for the
Equal (p = 0.004), Shapley (p < 0.001), and Unfair (p < 0.001) conditions. We found
no significant difference in the Proportional condition (p = 0.22), suggesting that the
external raters and the workers shared similar opinions about these payments.

We suggest several possible reasons for the differences in ratings between the two groups
of workers. First, the original workers only saw one type of payment, while the external
raters saw all four types. Workers may be more critical of Equal pay if they are aware
of the other, theoretically fair payments. Second, external raters are not biased in the
same ways that the original workers are. It is easier for raters to honestly judge whether
a payment is fair because they do not benefit from payments that reward any of the team
members.
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Survey Responses:

The external raters judged fairness using similar criteria to workers in the first study.
Most of the responses mentioned comparing the team members’ numbers of words typed,
correct words, or accuracy. A few raters were more interested in effort, and looked more
carefully at the words that the team members typed in order to gauge how hard they were
working. Some workers explicitly referred to their overall wages on Mechanical Turk, with
one worker citing “hourly wage... how much I work to eat.”

The majority of the workers were positive about the idea of rating each others’ work,
as long as they were paid to do it. Most workers were also happy to have their work judged
by others. One worker pointed out that this is already close to their job: requesters can
judge every HIT that they submit. However, several participants disagreed, saying that
this felt invasive and that it would be hard to trust the raters. Finally, one response said
that it would be stressful having to worry about performance ratings on top of already low
pay.

4.4 Discussion

In this chapter, we studied how crowd workers are motivated by different payment divisions
for group-based work. We identified two theoretically fair payments, motivated by equity
theory and cooperative game theory, and evaluated how these payments can affect worker
motivation in the crowdsourcing ecosystem. In our first study, we found that workers
who were paid theoretically fair bonuses—that is, proportional to quality of their work
or calculated with the Shapley values—reported their payments as being more fair than
equal bonuses. Furthermore, our second study showed that this effect is even stronger for
external raters that were not involved in the tasks. We also discovered that workers were
positive about tasks that involve working with or evaluating other workers. Finally, our
performance metrics suggest that workers might exert slightly more effort when they are
paid with these fair bonus divisions, but we do not have conclusive evidence of this effect.
In this section, we discuss the implications of our findings for future collaborative crowd
work.

4.4.1 The Impacts of Payments and Transparency

In Chapter 3, we showed that collaborative tasks with close interactions between workers
can be used to solve complex problems. By allowing these close interactions, teams of
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workers can combine their skills in creative writing or cognitive tasks, work around sub-
jective instructions, or divide work on the fly. However, in these tasks, it is essential to
ensure that workers feel that they are paid equitably. Our experimental results showed
that workers are receptive to fair and unfair payments, with the most skilled workers in
the teams being the most sensitive to unfair payments. In order to keep workers motivated
and satisfied with their rewards, it is crucial to pay workers relative to their contributions
to the team.

Ethically, paying workers fairly for their work is the right thing to do. However, Fieseler
et al. [24] posited that treating workers fairly and transparently is not simply a question
of ethics. They proposed several features that crowdsourcing platforms – such as Me-
chanical Turk – could implement for the benefit of both workers and requesters. Allowing
communication between workers would decrease feelings of isolation, help workers set time
commitments and effort levels, and clarify task descriptions. Additionally, payment trans-
parency would help to mitigate feelings that requesters are lying or deceiving workers.
Together, these effects would lead to more committed workers with increased trust, sat-
isfaction, and intrinsic motivation. We argue that collaborative tasks are an opportunity
for requesters to reap these benefits now. Rather than relying on the platform to take
action, requesters can implement tasks with explicit collaboration and public payment in-
formation. As long as requesters are conscious of paying fairly, these tasks are an excellent
opportunity to build trust and reputation with workers, and ultimately to produce better
results. However, help from the platform is still necessary to support workers by ensuring
that requesters reveal accurate and truthful information about work and pay.

Workers need knowledge of their teammates’ work and wages to make equity judge-
ments, so requesters might think that they can sidestep the issue of fair payments by
withholding this information. We reiterate that it is impossible to keep payments secret.
Crowd workers have a basic social need for communication [26]; when they are not pro-
vided with communication channels, they seek to reproduce these channels in both public
forums and private relationships. These external communication lines give workers a way
to exchange payment information, and these discussions can often be more speculative
than truthful. On top of requesters’ moral duty to treat workers fairly, we also believe
it is in requesters’ best interests to communicate with workers on public platforms like
Turkopticon and TurkerView, or even publicize payment information themselves.

There is also an opportunity here for crowdsourcing platforms to make an impact.
Mechanical Turk hides most information about its workers, and requesters – particularly
inexperienced ones – may interpret this anonymity as a signal that workers do not com-
municate with each other. This lack of information can encourage opportunistic or ex-
ploitative behaviour from requesters [24]; in fact, even well-intentioned requesters cannot
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correct their actions unless they know that their workers are unhappy. Platforms can
combat this behaviour by improving transparency on their marketplace: for instance, by
displaying requesters’ historical wages on the workers’ interface. Although many workers
already rely on external tools that provide this information, building these features into
the platform would send a clear signal to requesters that they should be conscious about
treating workers equitably.

A substantial number of workers from our studies were intrinsically motivated by work-
ing with others, describing the teamwork as enjoyable, motivating, and fun. For these
workers, it would be useful to provide a consistent source of collaborative work. Gray et
al. [26] proposed splitting crowd work into two separate streams, with one stream permit-
ting collaboration in tasks that do not require independent responses. We suggest that
this idea can be taken another step further. Rather than simply allowing workers to com-
municate, this stream of work can be designed to leverage the benefits that workers and
requesters receive from transparent teamwork.

4.4.2 Fair Payment and Effort

In our main experiment, we did not find conclusive evidence that workers exert more effort
when they are paid using theoretically fair methods. It is possible that there truly is
no effect: Ho et al. [30] suggest that performance-based payments may not affect worker
effort if the bonuses are too small, relative to the task’s overall pay, or if the task is not
effort-responsive. We used a relatively small bonus compared to our base payment so that
even the lower-performing workers could earn close to minimum wage in our experiment.
However, there are several other possible explanations for our results.

First, real-time audio transcription tasks are not perfectly suited for measuring a
worker’s skill and effort. Our metrics, which are related to typing speed and accuracy,
have a large amount of variance between audio clips. Future studies on this topic should
consider tasks where the quality of workers’ output is more consistent, and should more
carefully measure workers’ initial skill levels – for example, using a longer qualification
task.

The other reasons are factors that could affect workers’ motivation and actions. We
paid workers close to minimum wage, which is substantially higher than a typical task on
Mechanical Turk [28]. We also told workers that they would be paid bonuses. Knowledge of
a bonus might reduce workers’ fear of having their work rejected, as bonuses on Mechanical
Turk can only be paid after approving a HIT. Without this knowledge, workers might have
worked harder to ensure their work is accepted, even if their bonuses are not motivating.

37



Finally, many workers mentioned that they found the task fun, interesting, and different.
Workers that are intrinsically motivated might work hard regardless of their teammates’
bonuses. Tedious, uninteresting tasks such as Yin et al.’s button-clicking task [97] would
help to isolate the effects of bonuses on workers’ effort. Longer tasks, taking an hour or
more, would also help to capture these effects.

4.4.3 Limitations

We evaluated our payment divisions on an audio transcription task, where it is easy to view
and compare results from several workers. These comparisons would be possible in basic
content creation tasks, which are one of the most common types of HITs on Mechanical
Turk [28]. However, there may not be a simple way to represent the amount of work that
each worker has contributed to the team in more complex tasks. For instance, in a creative
writing task, it is difficult to determine how valuable each worker was to the team’s thought
process. We cannot generalize our results to tasks without clear performance metrics.

In our main experiment, we simulated a team environment by comparing workers’ tran-
scripts against previous participants. This style of task is similar to existing crowdsourcing
workflows, but it is quite different from tasks with real-time team interactions. Working
with a team in real time may be more motivating, but it could make workers more frus-
trated or anxious as they are forced to work at the team’s pace. More work is required to
understand the impacts of real-time interaction.

Finally, we did not control for the location of the workers in our experiment. The
majority of workers on Mechanical Turk are located in the United States, but an appreciable
number live in other countries, with the largest group being from India [26]. It is possible
that there are significant cultural differences between these worker populations that we
have not studied here.
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Chapter 5

Human Perceptions of Fairness

In Chapter 4, we used the Shapley value as a method for computing fair payment divisions
between workers. The Shapley value is an attractive payment method for several reasons.
It does not depend on subjective judgements of workers’ inputs, and it is theoretically fair –
at least, as long as its four axioms are believed to be fair. However, our experimental results
showed that external, unbiased raters considered proportional payments to be more fair
than the Shapley value. This finding hints at a fundamental difference between Shapley’s
axioms and human understandings of fairness.

In this chapter, we take a deeper look at human perceptions of fairness in the context
of cooperative games. We use two controlled experiments to see how people divide rewards
in fictional cooperative games, where they are impartial to the outcome. We compare our
results to De Clippel et al. [21], who suggested that human reward divisions only violate the
null player axiom when considering zero-normalized games. In contrast, our experiments
show that people also violate the additivity axiom, and their reward divisions are often
unrelated to the Shapley value.

5.1 Values for Cooperative Games

We begin this chapter by formally defining the cooperative game theory concepts that we
described in Chapter 2.4.
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5.1.1 Cooperative Games

A transferable utility game G = (N, f) consists of a set of players N = {1, 2, . . . , n} and a
characteristic function f : 2N → R. This characteristic function assigns a reward f(C) to
each coalition C ⊆ N . We typically require f(∅) = 0 – a coalition with no players earns no
reward. In this paper, we restrict our attention to transferable utility games with n = 3
players, so we often refer to the characteristic function f as a “game”. Also, we often write
the set {i} as i and the set {i, j} as ij – for example, C ∪ i means C ∪ {i}.

A player i’s marginal contribution to a coalition C ⊆ N \ i is the amount of reward
that the player brings by joining the coalition

mc(i, f, C) = f(C ∪ i)− f(C).

Two players i and j are symmetric if they contribute the same amount to all coalitions:

mc(i, f, C) = mc(j, f, C) ∀C ⊆ N \ ij.

A null player is one who contributes nothing to any coalition:

mc(i, f, C) = 0 ∀C ⊆ N \ i.

A game is monotonic if all possible marginal contributions are non-negative: for all C ⊂ N
and all i 6∈ C, mc(i, f, C) ≥ 0. A game is zero-normalized if no player can earn a non-zero
reward by working alone: for all i ∈ N , f(i) = 0.

For the sake of a running example, Table 5.1 shows a tabular representation of a 3-
player game. In this example, Alice can earn a small amount of reward of 15 units by
working alone, while Bob cannot. If Bob works together with Alice, they can earn a much
larger reward of 60 units together. Charlie is a null player: adding him to any of the
coalitions does not increase its value.

5.1.2 Values

A value is a function v : R2N → RN that assigns a reward vi(f) to each of the players i in
the game f . We will focus on efficient values, where

∑
i vi(f) = f(N) – all of the group’s

reward is allocated to the players. Perhaps the simplest value is the equal division value
ED(f), where each player receives an equal fraction of the total:

EDi(f) =
f(N)

n
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Coalition C Reward f(C)

(nobody) 0
Alice 30
Bob 0
Charlie 0
Alice, Bob 60
Alice, Charlie 30
Bob, Charlie 0
Alice, Bob, Charlie 60

Table 5.1: A 3-player transferable utility game.

The game in Table 5.1 has an equal division value of [20, 20, 20].

The most celebrated value is the Shapley value [85], which is the unique value Sh(f)
that satisfies four axioms:

• Symmetry : if players i and j are symmetric in f , then Shi(f) = Shj(f).

• Efficiency : the players’ rewards sum to f(N):
∑

i Shi(f) = f(N).

• Null players : if player i is a null player in f , then Shi(f) = 0.

• Additivity : if f and g are two games, define a new game (f + g)(C) = f(C) + g(C)
for all coalitions C. Then, Shi(f + g) = Shi(f) + Shi(g).

This value can be computed by rewarding each player the amount of value they bring to a
coalition, averaged over all possible orders of building the coalitions:

Shi(f) =
∑
C⊆N\i

|C|!(n− |C| − 1)!

n!
mc(i, f, C)

For example, for the game in Table 5.1, consider the order [Charlie, Alice, Bob]. Charlie,
working alone, earns no reward. When Alice joins him, she adds 30 units of reward to the
group’s value. When Bob joins the pair, he brings the group up to a total reward of 60
units, adding another 30 units. Repeating these calculations for all 6 possible permutations
of the players and averaging each player’s contributions gives a Shapley value of [45, 15, 0].
Note that Charlie, as a null player, earns no reward.
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More recently, alternative values have been proposed. One is the family of egalitarian
Shapley values [36, 10], which is the set of convex combinations of the equal division and
Shapley values:

Shα(f) = αSh(f) + (1− α)ED(f)

Here, the parameter α describes a social norm of equality: α = 0 gives the equal division,
while α = 1 recovers the Shapley value. For example, with α = 0.5, the egalitarian Shapley
value for the game in Table 5.1 is [32.5, 17.5, 10]. Another is the solidarity value [74], which
is

Soli(f) =
∑
C3i

(n− |C|)!(|C| − 1)!

n!
Af (C)

where Af (C) = 1
|C|
∑

i∈Cmc(i, f, C) is the average marginal contribution of any player to

C. For the game in Table 5.1, the solidarity value is [30, 17.5, 12.5]. Nowak suggests that
the solidarity value is more human, capturing some subjective psychological aspects of the
game, while the Shapley value is the “pure economic” solution.

Note that each of these values describes a single reward vector for every game. While
there are other methods for describing reward vectors, such as the core, the kernel, and
the bargaining set, these are often more focused on the stability of the proposed reward
vectors [12], and they can be multi-valued or empty for some games. We choose to leave
these and instead focus on single-valued solution concepts.

5.1.3 Procedural Values

The key difference between these values is that they vary the amount of reward that each
player receives for their marginal contributions to each coalition. This idea is generalized
by the family of procedural values.

A procedural value P s(f) is described by a tuple of n−1 parameters s = (s1, s2, . . . , sn−1).
Each term in this tuple is a measure of equality: when a player joins a coalition of size k,
they keep a fraction sk of their marginal contribution, and the remaining fraction (1− sk)
is split equally among the coalition’s other players. To simplify calculations, we denote
s0 = sn = 1. These procedural values can be computed as

P s(f) =
∑
C⊆N\i

|C|!(n− |C| − 1)!

n!

[
s|C|+1f(C ∪ i)− s|C|f(C)

]
.

To help understand the effects of varying the s parameters, we describe a method for
decomposing a value into several components. First, we define the games fk for 1 ≤ k ≤ n
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as

fk(C) =

{
f(C), |C| = k

0, |C| 6= k

Then, we define dk(f) = Sh(fk). Each of these dk vectors represents the differences
between the players’ marginal contributions, only considering coalitions of size k. Note
that dn(f) = ED(f), and for k < n,

∑
i d

k
i = 0 – adding dk to a value preserves efficiency.

For example, take the game in Table 5.1. Considering the 1-player coalitions, the first
vector is d1(f) = [10,−5,−5]: Alice can earn some reward alone, but Bob and Charlie
cannot. For the 2-player coalitions, the vector is d2(f) = [15, 0,−15]: Alice is the most
productive in a pair, while Charlie is not useful to any of the pairs, and Bob is in between
these two. This decomposition allows the procedural values for any game to be written as
a vector sum; for a 3-player game,

P s(f) = ED(f) + s1d
1(f) + s2d

2(f).

We also overload notation and write dSh(f) = Sh(f) − ED(f) so the egalitarian Shapley
values are

Shα(f) = ED(f) + α dSh(f)

We use procedural values to design our games and interpret our results in this paper
for two reasons. First, the family of procedural values includes all of the values described
previously: ED(f) has sk = 0, Sh(f) has sk = 1, Shα(f) has sk = α, and Sol(f) has
sk = 1

k+1
. Second, De Clippel et al. [21] found the egalitarian Shapley values to be a

good model for their results; procedural values are a natural way to generalize this idea to
non-zero-normalized games.

5.2 Experiment 1

In our first experiment, we studied how people’s reward divisions are affected when the
players’ marginal contributions stem from the 1-player or the 2-player coalitions.

5.2.1 Games

For our first experiment, we aimed to extend the results from De Clippel et al [21]. One
natural way to do this is to construct a variety of games with identical Shapley values, but
divide the players’ contributions between the d1 and d2 vectors in different ways. Varying
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the games in this way allows us to understand how much weight people put on the different
coalition sizes. We expected people to pay more attention to the values of the individual
players acting alone than to the values of the 2-player coalitions.

We used 11 games in our first experiment. To construct these games, we chose three
Shapley values that represent different rank-orderings of the players. First, in 1-Worse
games (Sh = [25, 25, 10]), player 3 is less valuable than the other two. Second, in 1-
Better games (Sh = [30, 15, 15]), player 1 is more valuable than the others. Third, in
Distinct games (Sh = [30, 20, 10]), all three players have different values.

For each of these Shapley values, we created three games. In the Solo games, all
of the 2-player coalitions were all worth 60 units of reward, and the differences between
the players were caused by their individual values. In the Pair games, the single-player
coalitions were all worth 0 reward, and the pairs had different values. Note that the Pair
games are zero-normalized. In the Both games, the players’ marginal contributions were
split between both coalition sizes. These games have

Solo: d1(f) = dSh(f); d2(f) = 0

Both: d1(f) = d2(f) =
dSh(f)

2
Pair: d1(f) = 0; d2(f) = dSh(f)

We arbitrarily set the precise values of the coalitions to make the games monotonic. We also
added two additional games: one purely additive game with a Shapley value of [10, 20, 30],
and one symmetric game where Sh(f) = ED(f) = [20, 20, 20]. These 11 games are listed
in Table 5.2.

5.2.2 Method

Participants: We hired participants from Mechanical Turk. We posted human intelligence
tasks (HITs) with the title “Divide rewards in fictional scenarios (10 mins)” and offered
a payment of $1.25 USD. We required workers to have at least 1000 approved HITs with
a 95% or higher approval rate. We restricted the HIT to workers located in the United
States, and we used Mechanical Turk’s qualification system to ensure that workers could
not accept the HIT multiple times.

Task: During the experiment, participants were presented with a series of scenarios
about three fictional characters – Alice, Bob, and Charlie – playing a video game online.
Each of these scenarios was associated with a cooperative game, which describes how many
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Characteristic function Shapley value
Condition ∅ 1 2 3 12 13 23 123 1 2 3

1-Worse-Solo 0 40 40 10 60 60 60 60 25 25 10
1-Worse-Both 0 15 15 0 45 30 30 60
1-Worse-Pair 0 0 0 0 45 15 15 60

1-Better-Solo 0 40 10 10 60 60 60 60 30 15 15
1-Better-Both 0 15 0 0 45 45 30 60
1-Better-Pair 0 0 0 0 45 45 15 60

Distinct-Solo 0 40 20 0 60 60 60 60 30 20 10
Distinct-Both 0 20 10 0 60 50 40 60
Distinct-Pair 0 0 0 0 60 40 20 60

Symmetric 0 20 20 20 40 40 40 60 20 20 20

Additive 0 10 20 30 30 40 50 60 10 20 30

Table 5.2: The 11 games used in experiment 1. All games have f(∅) = 0 and f(123) = 60.

gold pieces every coalition could earn by working together. We displayed this information
in a colour-coded table, which listed every combination of players and the amount of gold
that the group could earn. Then, we told workers that the three characters all chose
to work together, and we asked how the gold should be divided. Workers entered their
responses by adjusting three sliders and clicking the submit button. The interface disabled
the submit button as long as there was a surplus, only allowing efficient responses to be
submitted. The experiment interface is shown in Figure 5.1.

Procedure: After workers accepted the HIT, they filled out a consent form and com-
pleted a brief tutorial. In this tutorial, we described the interface and asked comprehension
questions about the reward displays. Then, workers completed 11 rounds of the task, with
each round corresponding to one of the 11 games. We presented the 11 games to partici-
pants in a random order. We also randomly labelled players 1, 2, and 3 as Alice, Bob, and
Charlie in each game.

At the end of the experiment, workers filled out a post-study questionnaire. Here, we
asked participants about their age and gender. Then, we asked three open-ended questions:
what factors they considered while dividing the rewards, whether they thought the solo or
pair values were more important, and whether they thought other participants would have
split the rewards differently. We defer our discussion of the post-study questionnaire to the

45



Figure 5.1: The task interface. Participants were presented with a tabular representation
of the game and asked to divide the total reward between the three players. The “submit”
button was only enabled when the entire reward was allocated.

final section of this paper. Finally, after completing this questionnaire, workers received a
confirmation code and submitted the HIT.

5.2.3 Results

A total of 100 workers completed the HIT. We noticed a number of workers who submitted
low-quality answers (for example, submitting [30, 30, 0] in the Symmetric condition). To
remove these low quality answers, we filtered out 21 workers who spent less than 5 seconds
on at least one scenario. We also removed 4 additional workers who repeatedly submitted
nonsensical answers, such as [1, 1, 58] in Distinct-Both. The remaining 75 workers spent
a median of 16.1 seconds per game. We confirmed that this filter criteria was appropriate
by checking the rewards in the Symmetric game. After filtering, the most extreme reward
in this game was [20, 22, 18], differing from an equal division by 2 gold pieces.
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For each game, each participant submitted one reward division. These rewards are
plotted in Figure 5.2. Each of these plots shows the distribution of selected rewards, along
with the equal division (red circle) and the Shapley value (blue circle) for every game.

There are several key features to note about these plots. First, most rewards in all
games are close to affine combinations of the equal division and the Shapley value. On
this line, there are a few key points where most rewards land. The most common is the
equal division. The exact frequency of the equal division varies between games, but it is
always at least 25 of the 75 participants. Then, the Shapley value also appears frequently
in many games. Other common points include rewards half or double the distance from
the equal division to the Shapley value.

Next, we focus on the differences between the 9 main games in this experiment. To more
easily visualize these differences, for each reward, we calculated the the sum of the absolute
differences – in other words, the L1 norm – from the equal division. The distributions of
these distances are shown in Figure 5.3. These distributions show substantial differences
between the Solo, Both, and Pair games for each Shapley value. In all three cases, the
rewards that are furthest from the equal division appear most often in the Solo games.
Then, in the Both and Pair games, many of these people move toward a more equal
division. For instance, in 1-Better-Solo, 14 participants submitted rewards that were
approximately 40 gold pieces away from an equal division; in 1-Better-Both, only 3
such rewards remained.

We confirmed these trends using non-parametric within-subjects statistical tests. First,
we performed Friedman tests to test whether the distances between the rewards and the
equal division are different in the Solo, Both, and Pair games. We found significant
differences between these games for all three Shapley values (all p < 0.001). Then, we per-
formed pairwise Wilcoxon signed-rank tests with a Holm-Bonferroni correction for multiple
comparisons. For all three Shapley values, we found a significant difference between the
Solo and Pair conditions (all p < 0.001) and between the the Both and Pair conditions
(p < 0.01). We also found a significant difference between the Solo and Both conditions
for the 1-Better Shapley value (p < 0.001). These results confirm that people give more
equal reward divisions in the Pair games and more unequal rewards in the Solo games.

5.3 Experiment 2

Our data from the first experiment appears to be consistent with De Clippel et al. [21].
However, the set of games in this first experiment was still quite restricted. In each of the
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Figure 5.2: The rewards that participants submitted for each game in Experiment 1. On
each plot, ED(f) is circled in dark red, and Sh(f) is circled in light blue.
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Figure 5.3: Histograms showing the distances between the submitted rewards and the equal
division. Rewards far from an equal split are most common in the Solo games, and equal
divisions are most common in the Pair games.

games, either d1 or d2 was 0, or d1 and d2 were colinear. We now turn our focus to games
where these conditions do not necessarily hold. Specifically, we attempt to find games
where human-chosen rewards differ from the egalitarian Shapley values, and we investigate
how different properties of the 1-player coalition values affect these differences.

5.3.1 Games

We used 17 games in our second experiment. We picked two of the Shapley values, 1-
Worse and 1-Better, from the first experiment. Then, we selected d1 vectors that do
not point towards these Shapley values. For 1-Worse, we used vectors of the form

d11-Worse = [2x,−x,−x]

and for 1-Better, we used vectors of the form

d11-Better = [x, x,−2x]

In other words, the 1-player coalition values in these games are “misleading”. In these 1-
Worse games, the solo coalitions give the appearance that player 1 is more valuable than
player 2; the reason why the Shapley value assigns the same reward to them is because
player 2 is more productive when working in a pair with player 3. Similarly, in the 1-
Better games, players 1 and 2 are both valuable while working alone, but player 1 is
better at collaborating with player 3.
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Characteristic function Shapley value
Condition ∅ 1 2 3 12 13 23 123 1 2 3

1-Worse-Zeros2 0 2 0 0 40 10 12 60 25 25 10
1-Worse-Zeros5 0 5 0 0 40 10 15 60

1-Worse-Zeros10 0 10 0 0 40 10 20 60
1-Worse-Sum30 0 20 5 5 60 30 45 60
1-Worse-Sum45 0 25 10 10 60 30 45 60
1-Worse-Sum60 0 30 15 15 60 30 45 60

1-Better-Zeros2 0 2 2 0 38 40 10 60 30 15 15
1-Better-Zeros5 0 5 5 0 35 40 10 60

1-Better-Zeros10 0 10 10 0 30 40 10 60
1-Better-Sum30 0 15 15 0 45 60 30 60
1-Better-Sum45 0 20 20 5 45 60 30 60
1-Better-Sum60 0 25 25 10 45 60 30 60

1-Null-Zeros 0 20 0 0 60 20 0 60 40 20 0
1-Null-Sum40 0 30 10 0 60 30 10 60
1-Null-Sum50 0 35 15 0 60 35 15 60
1-Null-Sum60 0 40 20 0 60 40 20 60

Symmetric 0 20 20 20 40 40 40 60 20 20 20

Table 5.3: The 17 games used in experiment 2.

For each Shapley value, we selected 6 games using these vectors. In 3 of these games
(Zeros2, Zeros5, and Zeros10), we gave values of 0 to some of the players and values
of 2, 5, or 10 to the others. We thought that participants would give disproportionately
low credit to players who could not earn any reward alone. In the other 3 games (Sum30,
Sum45, and Sum60), we chose values for the players that summed to 30, 45, or 60. For
example, in the 1-Worse-Sum30 game, the individual players’ values are 20, 5, and 5,
respectively. We were curious if people would place more weight on these values as they
became larger.

We also included 4 games with a null player, where Sh = [40, 20, 0]. We refer to this
value as 1-Null. In these four games, we gave player 2 a reward of 0 (1-Null-Zeros) or
we had the individual rewards sum to 40, 50, or 60 (1-Null-Sum40, 1-Null-Sum50, and
1-Null-Sum60), respectively). We also included the Symmetric game from experiment
1. All 17 games are listed in Table 5.3.
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5.3.2 Method

We used the same method as Experiment 1 with some minor adjustments. Due to the
increased number of games, we posted HITs with the title “Divide rewards in fictional
scenarios (15 mins)” and offered a payment of $1.75 USD. Otherwise, the rest of the
procedure was unchanged. We continued to use the same qualification system, ensuring
that no participants from the first experiment could access the HIT.

5.3.3 Results

A total of 100 workers completed the experiment. We used the same filtering criteria as
in the first experiment, removing all workers that completed any round in 5 seconds or
less. We also manually removed 4 workers with low-quality submissions. After filtering,
we were left with 74 workers. These remaining workers spent a median of 15.1 seconds per
game. We checked the filter’s quality with the Symmetric game; all 74 workers submitted
a reward of [20, 20, 20] for this game.

Each participant submitted a reward division for all 17 games. We split this data
across two figures. Figure 5.4 shows the rewards for the 1-Worse and 1-Better games;
Figure 5.5 has the 1-Null games.

Compared with the data from our first experiment, these rewards show some striking
differences. In almost all of the games, the majority of the rewards that participants
selected are not affine combinations of equal divisions and the Shapley values. Further, in
the 1-Worse and 1-Better games, the Shapley values are quite uncommon. In fact, in
four of the 1-Better games, no participants chose the Shapley values. However, there is
still a clear linear pattern to the rewards in most games. In the 1-Worse games, most of
the rewards lie between the equal division and the value [60, 0, 0]; in the 1-Better games,
they lie between the equal division and [30, 30, 0]. These two trends are the directions of
the d1 vectors for both sets of games. The 1-Null-Zeros game appears to be similar to
the 1-Worse games, with many of the responses giving a disproportionately high amount
of reward to player 1. Lastly, the other 1-Null games have more rewards close to the
Shapley values.

In order to describe these trends, we used principal component analysis (PCA). For each
of the games, we computed the main principal component of the game’s data. With our
data, this principal component can serve as a d vector – its elements are guaranteed to sum
to zero. We note that PCA is sensitive to outliers, but we elect to use it for this analysis
because most of the outliers have already been removed from the data. The computed
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Figure 5.4: The rewards that participants submitted for each of the 1-Worse and 1-
Better games in Experiment 2. In each plot, ED(f) is circled in dark red, and Sh(f) is
circled in light blue. Green lines indicate the direction of the main PCA component. In
all 12 games, the PCA component is close to d1(f), but far from dSh(f).
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Figure 5.5: The rewards that participants submitted for the 1-Null games in experiment
2. In each plot, ED(f) is circled in dark red, and Sh(f) is circled in light blue. Green lines
indicate the direction of the main PCA component. The rewards approach the egalitarian
Shapley values as the 1-player coalition values become closer to 60.

principal components are plotted as green lines in Figures 5.4 and 5.5. Due to the high
number of participants selecting equal splits in all games, we plotted these components as
passing through the equal division. These components are highly consistent, with nearly
identical directions in each 1-Worse game and in each 1-Better game. They also show
the differences between the 1-Null games, where the components steadily shift from the
extreme value in 1-Null-Zeros towards the set of egalitarian Shapley values in 1-Null-
Sum50 and 1-Null-Sum60.

To make a formal comparison between the data and the Shapley values, we used boot-
strapping to find confidence intervals for the angles of the PCA components. Specifically,
to compute one bootstrapped estimate of the angle for a game, we sampled 74 points with
replacement from the dataset of 74 rewards, and we recalculated the PCA component on
our resampled data. We repeated this process 10000 times for each game to get a distri-
bution of the PCA angles, and we took the middle 99% of these angles as the confidence
interval. These intervals are shown in Figure 5.6. Only three of these confidence intervals
contain the dSh(f) vector: 1-Null-Sum40, 1-Null-Sum50, and 1-Null-Sum60. How-
ever, almost all of them contain the d1(f) vector; the only exception is 1-Better-Sum30,
where it is 0.7◦ outside of the interval. The consistency of these directions strongly suggests
that the egalitarian Shapley values are not a good model for human-selected rewards in
these games.

Many of the confidence intervals in Figure 5.6 are quite tight, suggesting that most
participants have similar reactions to the games. Some examples of these tight intervals
are in the 1-Worse-Sum30 and 1-Better-Sum60 games, where most of the data falls
neatly on the PCA line. However, there are several games with wider intervals, indicating
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Figure 5.6: Bootstrapped 99% confidence intervals for the angles of each of the PCA
components. For each game, the angle of the vector dSh(f) is indicated with a black
point. All but one (1-Better-Sum30) of the confidence intervals contain d1(f); only the
rightmost three intervals contain dSh(f).

that participants submitted a wider variety of rewards. Two of these games are particularly
interesting.

First, in 1-Worse-Sum60, the confidence interval is wide because of a lack of extreme
rewards: no participant gave more than 35 gold to player 1. This data contrasts with
1-Worse-Sum30, where it was much more common to give rewards close to [40, 10, 10].
This difference suggests that participants use the players’ individual values as a baseline
for their rewards; if these values are large, there is little room to vary the leftover reward
between the players. Second, 1-Better-Sum30 has a large confidence interval due to a
small number of rewards close to [30, 0, 30]. While these rewards might be dismissed as
outliers, there is a possible explanation: in this game, f(13) = 60, so players 1 and 3 can
obtain the entire reward without the help of player 2. It is plausible that some participants
put a larger amount of weight on coalitions that can obtain the full team’s value.

5.4 Discussion

The results from both of our experiments suggest that the single-player coalitions in coop-
erative games play an important role in people’s decisions on how to divide the rewards. In
the rest of this section, we provide additional insights and analyses as to how participants
made reward division decisions. First, we analyse the post-study questionnaire data so
as to better understand the stated rationales of participants decisions. We then compare
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our experimental data in order to see how participant decisions aligned with the axioms
used to define the Shapley value and with the rewards predicted by procedural values. We
conclude with a discussion of the validity of our results and directions for future work.

5.4.1 Post-Study Questionnaires

The responses to the post-questionnaires in both experiments were similar, so we discuss
both together in this section.

We asked participants what factors they considered when splitting the rewards and
whether the values of the solo or the pair coalitions were more important. Approximately
40% of the responses explicitly mentioned basing their rewards on the individual players.
Many of these responses explained that these individual values represented the skill or effort
levels of the players. A few participants also mentioned that the solo coalitions are easier to
understand, and that it is harder to know which players are the biggest contributors to the
larger coalitions. Then, roughly 20% of the participants said that they split the rewards
equally. Generally, they justified this choice by saying that the players chose to complete
the quest as a group, so the amounts that they could have made alone are irrelevant – the
only fair way to divide the rewards was an even split. The remaining responses gave a
variety of answers with vague mentions of “fairness” or “equity”.

We also asked participants if they thought others would select different rewards; ap-
proximately 65% said yes. Many participants said that the problem of allocating rewards
has no objective answer, and they expected that others might simply consider different
components of the scenarios. A number of participants who submitted equal rewards cor-
rectly suggested that others might focus on the solo coalition values, and vice versa. One
response mentioned that people’s selected rewards might differ because they have different
calculation abilities. The remaining responses either suggest that others would split the
rewards in a similar to manner to themselves or gave a non-committal answer.

5.4.2 Shapley Value Axioms

The Shapley values are characterized by four fairness axioms. In both of our experiments,
we only allowed participants to submit efficient rewards, but we made no restrictions related
to the other three. Did participants obey these axioms?

Symmetry: Six of the games in Experiment 1 have two symmetric players. In the
three 1-Worse games, players 1 and 2 are symmetric; in the 1-Better games, players
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Figure 5.7: Cumulative distributions of the rewards that were assigned to null players in
Experiment 2. The height at each reward r indicates the number of participants who gave
no more than r gold pieces to the null player.

2 and 3 are symmetric. To check whether the rewards obeyed symmetry, we used paired
Wilcoxon signed-rank tests to test whether the two symmetric players received different
rewards. We found no significant differences between these rewards in any of these six
games (all p > 0.1). Thus, we cannot reject the hypothesis that participants obey the
symmetry axiom.

Null Players: In all four of the 1-Null games in Experiment 2, player 3 is a null
player. It is clear from Figure 5.5 that a majority of players give a positive reward to player
3, breaking the null player axiom. To help quantify this behaviour, Figure 5.7 shows the
cumulative distribution of the rewards that people assigned to player 3 in each of these
games. This plot shows that, even in the best case (1-Null-Sum60), only 14 of the 74
participants satisfied the null player axiom; in the other games, this proportion is even
smaller. Instead, many of the participants tended to assign small, round rewards to the
null player, with rewards of 5, 10, and 15 being most common. (Note that the large jump
at 20 is mainly caused by the large number of equal divisions.) While participants tend to
recognize that null players contribute little to the group, they rarely go so far as to assign
no reward to these null players.

Additivity: Several of the games in Experiment 2 are closely related. For instance,
between the 1-Worse-Sum30 and 1-Worse-Sum45 games, the only difference is that all
of the solo coalitions’ values have been increased by 5. This change is equivalent to adding
the game

f(C) =

{
5, |C| = 1

0, |C| 6= 1
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It is difficult to argue that any value other than [0, 0, 0] is reasonable for f : f(N) = 0,
and all three players are symmetric. Then, to satisfy additivity, participants must select
the same rewards for all three of the 1-Worse-SumX games and for all three of the
1-Better-SumX games.

We used 6 within-subjects Friedman tests to check if participants violated additivity.
For instance, one of these tests checked whether participants assigned the same rewards
to player 1 in the 1-Worse-Sum30, 1-Worse-Sum45, and 1-Worse-Sum60 games. 5
other similar tests compared the rewards for player 2 or 3 and for both the 1-Worse-
SumX and 1-Better-SumX games. In the 1-Worse games, we found that the rewards
allocated to players 1 and 3 varied significantly between the games (both p < 0.01). Our
results also approached significance in the 1-Better games, where the rewards assigned
to player 1 (p = 0.08) and player 3 (p = 0.07) were inconsistent. These results imply that
people may not obey additivity in all cases – simply adding a constant to each of the solo
coalitions has a significant impact on their reward divisions that cannot be explained by
additive models.

5.4.3 Models for Human Rewards

Motivated by the concept of procedural values, we found that the values of the solo coali-
tions have a larger impact on human-selected rewards than the pair coalitions’ values.
Now, we ask: can predictions from procedural values be used to accurately describe our
participants’ rewards?

To answer this question, we tried finding procedural values that accurately described
each participant’s rewards. However, it would be too strict to require an exact match
between the procedural value predictions and the actual rewards. To allow for some er-
ror, we searched for parameters (s1, s2) such that the predicted values differed from each
participants’ rewards by no more than a threshold t in any player’s reward. We note one
caveat: this goodness of fit measurement has a slight bias, as it is easier to satisfy this
condition for rewards that are closer to an equal division. For every participant, we tested
all combinations of parameters s1 ∈ [−1, 2] and s2 ∈ [−2, 2] in steps of 0.01; we report our
results using thresholds of t = 2 and t = 5.

We had little success fitting these procedural values to individual participants. In
experiment 1, we found 25 participants that submitted an equal division for every game,
so they could be described by s = (0, 0). However, few of the other participants could be
described by any procedural value. With a threshold of t = 2, we only found a good fit
for one participant with s = (0.3, 0.2); increasing this threshold to t = 5, 19 participants
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Figure 5.8: Regions of (s1, s2) that describe the population averages for each experiment.
Experiment 1 averages were fit using a threshold of t = 2; Experiment 2 averages used
t = 4. The regions overlap, but neither one contains the egalitarian Shapley values or the
solidarity value.

had a suitable set of parameters. The remaining 31 participants could not be described
by any procedural values. We found similar results in experiment 2. Here, 19 participants
submitted equal divisions; otherwise, procedural values only described 2 and 8 participants
at t = 2 and t = 5 respectively. We conclude that procedural values are generally not
suitable for describing individual people’s reward divisions.

We repeated this process using the population averages for each game instead of indi-
vidual participants’ rewards. Surprisingly, we found that the averages are described fairly
well by procedural values. In experiment 1, we found a set of good s-values at t = 2; in
experiment 2, we also found good fits at t = 4. The regions of these suitable s parameters
are plotted in Figure 5.8. We note that these regions overlap around the point (0.65, 0.25),
but neither region contains the egalitarian Shapley values or solidarity value.

There are several possible reasons why few participants can be described accurately
by procedural values. One potential reason for this is that people may be performing a
completely different type of calculation. As one participant mentioned explicitly in their
questionnaire, the values of the single-player coalitions might serve as an initial source of
information. Then, depending on how informative these values are, some people might feel
that they understand the relationships between the players’ power in the game without
considering the two-player coalitions. There are many possible features that could cause
people to quickly make a judgement about the game. Two examples are games where
the single-player values sum to f(N), or where one of the single-player coalitions has
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f(i) = f(N). In this model, instead of a straightforward sum across all of the coalitions,
rewards might be calculated using a complex algorithm that relies on a number of simpler
heuristics – similar to Selten’s equal division payoff bounds for bargaining [84].

Another possible explanation is that there could be a non-linear utility function in-
volved in the computation. If each person has a utility function u(x), then they could be
computing rewards for the game fu defined by

fu(C) = u(f(C))

for all coalitions C. Then, they could be computing procedural values on fU instead of
f . For example, a proper choice of utility function might help to explain the violations of
additivity that we found in our data. However, there is a large space of possible models
for these utility functions, so we choose to leave this problem for future work.

5.4.4 Limitations and Validity

This work gave new insights about the heuristics that people use to divide rewards in
cooperative games. However, we could only study a limited number of games. What other
factors might influence these reward divisions?

First, we chose a limited number of Shapley values and designed games around these
values. We believe that other values could still expose new metrics that people apply to
these games. For instance, in cases where the Shapley values are extremely far from an
equal division, it would be interesting to see whether people are more or less willing to
select these extreme values. Also, we intentionally chose games with round numbers: we
used a total of 60 gold pieces so that division by 3 was possible, and all of our Shapley
values were based on multiples of 5. Testing games with non-round numbers could cause
effects related to the prominence of these values [3]: for instance, a coalition value of 10
might appear disproportionately larger than a value of 9.

Second, our results might depend on the framing of the game. In our experiments,
we gave a story of three people playing a video game online. One participant explicitly
mentioned this story in the surveys, stating that it is most common for parties to split their
loot evenly in these types of games, regardless of the members’ contributions. It would
be interesting to study how this behaviour changes for different scenarios. One way to do
this is to replace the video game setting with a merger negotiation between a number of
companies. Another way is to have participants divide losses or costs instead of rewards.
Reframing the games in this way might induce more calculated, rational behaviour.
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Third, we presented our games in a tabular format. This form is one of the easiest to
explain to participants, but it makes some types of calculations difficult. For example, to
check whether one of the players is a null player, one needs to manually compare several
coalitions’ values. This type of information might be more easily gained by representing
the games in different ways, displaying MC-net-like rules ([34]) or players’ skills for a
coalitional skill game [4]. A more succinct representation is also necessary in order to
extend this research to games with more than 3 players.

Finally, the population participating in the experiment might be a significant factor.
We used workers from Mechanical Turk, who are generally focused on completing their
tasks as quickly as possible. Furthermore, beyond our experiments’ tutorials, it is difficult
for us to measure how much comprehension workers had, and we cannot detect workers’
effort aside from our simple filtering criteria. Despite these potential issues, we still see
significant value in our results. First, rejected work can have severe consequences, so many
workers are remarkably careful and honest. Second, regardless of these issues, our data
shows clear trends indicating the consistency of these workers in almost all of the games.
Thus, while running these experiments through crowdsourcing might explain the high rate
of equal divisions in many games, we believe that our data successfully captures human
heuristics for these games.
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Chapter 6

Conclusion

Paid crowd work is no longer only a solo endeavour. Crowdsourcing systems are growing
to tackle larger, more difficult problems that can only be solved by allowing workers to
collaborate, and understanding how to support groups of workers in these tasks is crucial to
the future of crowdsourcing. In this thesis, we contributed to this effort by focusing on the
problem of paying crowd workers for collaborative work, drawing on concepts from equity
theory and cooperative game theory. Fair pay is not simply requesters’ moral responsibility:
theoretical literature suggests that paying groups of workers fairly is positively linked to
trust, satisfaction, and motivation.

In Chapter 3, we carried out a literature review of existing collaborative crowdsourcing
tasks. We identified four distinct types of information that workers often have available
to them during this type of work. We also found that some problems, such as creative
writing, difficult cognitive tasks, and tasks with subjective guidelines, can only be solved
with explicit collaboration, where workers can readily make equity judgements about their
wages. However, these existing tasks lack a systematic payment structure, instead relying
on ad-hoc payment methods.

In Chapter 4, we selected two fair payment division methods from equity theory and
cooperative game theory. Then, we used two experiments to test the effects of these pay-
ment divisions in a team-based audio transcription task. We found that workers are biased
in their fairness judgements, but are perceptive of fair and unfair payments. Our data
also suggests that fair payments could lead to small increases in worker effort that would
be significant in certain types of tasks. Based on our findings, we argue that requesters
and platforms can improve worker motivation, trust, and satisfaction by paying groups of
workers fairly and transparently.
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In Chapter 5, we took a closer look at the differences between human reward divisions
and the axiomatically fair Shapley value. To do this, we used two experiments to find
how people divide rewards in cooperative games while acting as impartial decision makers.
Our results showed striking systematic trends in people’s reward divisions that were often
unrelated to the Shapley value. Further, while prior work showed that human reward
divisions violate the null player axiom, we showed that they also break the additivity
axiom. Although we could not find a model that fully captures people’s decisions, our
results highlight a fundamental issue with the Shapley value’s axioms and open up a
direction for future research on these axioms. Understanding the breakdowns in these
fairness axioms will be important for building artificial agents that properly reason about
human perceptions of fairness.

6.1 Broader Impacts

It is important to recognize the ethical issues that crowdsourcing researchers face. Crowd-
sourcing platforms incentivize low pay, with workers on Mechanical Turk making a median
wage under US$2 per hour [28]. Finding new, difficult problems that workers can solve
together could have the unfortunate consequence of attracting more low-paying requesters
to the system. However, we believe that well-designed tasks with explicit teamwork are
beneficial to the workers. Having workers cooperate can give them more information about
their work, making it easier for them to avoid returning HITs or being rejected for misun-
derstanding a task – two of the biggest impacts on their hourly wage [28].

Emphasizing the role of teamwork in their tasks could also help workers become a
stronger community. Turkers already rely on forums, discussion boards, social networks,
and chat while working [26]. These communication channels help Turkers recognize good
and bad tasks or requesters. We hope that emphasizing the role of teamwork in their tasks
can help them become a stronger community with a more powerful voice to change the
status quo of micro-task crowdsourcing.

Additionally, our proposed payments may appear to be in conflict with minimum wage
standards. When one worker does not produce any useful input, both the proportional
payments and Shapley values give no payment. This point could be an issue: sometimes,
workers cannot complete their work due to factors out of their control, such as broken user
interfaces or unclear instructions. However, both payments can adapt around this issue.
For proportional payments, each worker’s input can combine the amount of work they did
with the amount of time they spent on the work, ensuring a minimum wage. Relaxing
the Shapley value’s null player axiom can also remove the requirement that null players
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receive no reward – for instance, resulting in an egalitarian Shapley value. In both cases, it
is possible to ensure a minimum wage for the workers as long as the group is given enough
reward to pay its workers this minimum wage.

6.2 Future Work

The research presented in this thesis opens up several directions for future work; we discuss
three of them here.

The first avenue for future work is to find a more precise description of human percep-
tions of fair payment divisions. When making equity judgements, equity theory does not
specify exactly how each person’s input should be quantified. These inputs could combine
many components, such as skill, effort, or time, in countless ways. How much value do
people put on each of these components? It seems likely that an answer to this question
would be closely related to workers’ egocentric biases; for instance, in our audio transcrip-
tion task, fast typists might place more value on complete transcripts, while slow typists
might appreciate effort or feel that they deserve their pay just for “showing up”. While
our experimental data could only give us a broad understanding of trends in workers’ fair-
ness perceptions, future studies could ask participants for more in-depth rationales to help
identify how they make these equity judgements.

There is also space for future research on human fairness perceptions in terms of co-
operative game theory. We found that people violate additivity when selecting reward
divisions, but additivity is central to the uniqueness of the Shapley value. Can the Shapley
value be modified to capture human fairness standards more faithfully? There are a myr-
iad of possible modifications. One idea is to weaken the additivity axiom: a weak version
of marginality [99] could be suitable, but other invariants could be uncovered by further
analyzing our dataset. Another is to transform the game, applying a non-linear utility
function or equalizing the players’ contributions, before computing the Shapley value or a
procedural value. People could also be modelled as performing a bounded number of calcu-
lations: perhaps their reward divisions can be described with a restricted form of stability
or as the outcome of imperfect play in a bargaining game [76]. More work is required to
test these conjectures.

The second direction for future research is to consider tasks where it is difficult to
quantitatively measure the quality of each teammate’s work. When the ground truth
is not known, the quality of each worker’s contributions could be estimated with crowd
agreement scores [53] or peer prediction algorithms [70]. However, in other tasks such as
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collaborative design work, there is no correct answer: workers may only have subjective
opinions about how valuable their teammates are. This problem has received some the-
oretical attention as the “divide the dollar” game [20]. Practical systems have also used
algorithms inspired by PageRank to divide credit between large teams of authors [91]. In
collaborative crowdsourcing tasks, it would be challenging to guarantee that these mecha-
nisms are robust against collusion – and further, to convince workers that these mechanisms
are trustworthy.

The final direction for future work is to study tasks that involve collaboration between
human workers and AI agents. Two examples of this type of task are Evorus [33], where
chatbots suggest messages alongside human workers, and DreamTeam [101], where teams
of workers are managed by Slack bots. In these tasks, workers could potentially feel that
these AI agents are taking their work, lowering their pay. It would be interesting to study
whether people’s biases change in these scenarios – perhaps they make more unforgiving
equity judgements when working alongside an AI. As human computation systems continue
to incorporate more computational agents, it will be increasingly important to understand
how these new types of tasks impact worker motivation.
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Appendix A

Experiment Details

In each of our four experiments on Mechanical Turk, we gave workers instructions through
an interactive tutorial. These tutorials included motivation for the experiment, information
about the interface, and details about the experimental procedure. We also gave post-
questionnaires at the end of each experiment. In this section, we give precise details about
the content in each of these tutorials and post-questionnaires.

A.1 Study 1: Performance-Based Bonuses

A.1.1 Tutorial

• During this study, you will transcribe 15 audio clips (30 to 40 seconds per clip).

• This is a real-time transcription task: you will not be able to pause or replay the au-
dio. It’s okay if you miss words or make mistakes; we don’t expect your transcriptions
to be perfect.

• We will remove all punctuation and convert your transcript to lowercase.

• Transcribe the first audio clip now. We will use this first round to measure your
initial skill level. Click the “Start Clip” button to begin.

• (Workers transcribed the first audio clip)

• At end of each of each audio clip, we will compare your transcript with 2 other
previous workers. (In this example, we’re showing 3 past workers.)
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• For each worker, we will show you how many words they typed and how many were
correct.

– How many words did Worker 1 type?

– How many words did Worker 1 type correctly?

• We will also show you a detailed view of their transcripts. Black words were typed
correctly, red words were typed incorrectly, and grey words were not typed.

– In Worker 2’s transcript, what is the status of the word ’northeast’?

– In Worker 2’s transcript, what is the status of the word ’gone’?

– In Worker 2’s transcript, what is the status of the word ’come’?

• We will count how many words were typed by at least one worker. Then. we will
give the team a total bonus of 5 cents for every 10 words.

– How many words did the entire team type?

– How many cents of bonus did the entire team earn?

• We will split this bonus between the three workers. (Note: if you transcribe every
audio clip, we can use your transcriptions in future HITs, and we will award you
bonuses as well.)

– How many cents of bonus did Worker 3 earn in this round?

• Finally, we will ask whether you think these bonuses are fair to the three workers.
You may answer ’Fair’, ’Neutral’, or ’Unfair’ by clicking one of the buttons. Do this
now to continue to the next audio clip. Thank you for participating!

A.1.2 Post-Questionnaire

Likert-type questions in this questionnaire gave options from 1 to 5 with anchors at 1
(strongly disagree) and 5 (strongly agree).

• Age

• Gender

• My bonus payments reflected the effort I put into this task. (1-5)
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• My bonus payments were appropriate for the work I completed. (1-5)

• My bonus payments were justified, given my performance. (1-5)

• My bonus payments were acceptable. (1-5)

• I was satisfied with my bonus payments. (1-5)

• What factors did you consider when rating your bonus payments?

• Did you enjoy this task? Why or why not?

• Would you like to perform tasks in a team with other Turkers? Why or why not?

• Any other feedback:

A.2 Study 2: External Ratings

A.2.1 Tutorial

• In a previous study, we hired workers to transcribe 30 to 40 second audio clips.

• This was a real-time transcription task: workers were not able to pause or replay the
audio. This is a dificult task, so we didn’t expect their transcripts to be perfect.

• During this study, we will ask you to evaluate the finished transcripts from 16 different
teams of 3 workers each.

• On this screen, we’re showing you the 3 workers’ transcripts. We removed all punc-
tuation and converted the transcripts to lowercase.

• For each worker, we will show you how many words they typed and how many were
correct.

– How many words did Worker 1 type?

– How many words did Worker 1 type correctly?

• We will also show you a detailed view of their transcripts. Black words were typed
correctly, red words were typed incorrectly, and grey words were not typed.

– In Worker 2’s transcript, what is the status of the word ’northeast’?
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– In Worker 2’s transcript, what is the status of the word ’gone’?

– In Worker 2’s transcript, what is the status of the word ’come’?

• After the workers finished the task, we counted how many words were typed by at
least one worker. Then. we gave the team a total bonus of 5 cents for every 10 words.

– How many words did the entire team type correctly?

– How many cents of bonus did the entire team earn?

• Finally, we split this bonus between the three workers.

– How many cents of bonus did Worker 3 earn for this audio clip?

• In this task, we will ask whether you think these bonuses are fair to the three workers.
You may answer ’Fair’, ’Neutral’, or ’Unfair’ by clicking one of the buttons. Do this
now to continue to the next team. Thank you for participating!

A.2.2 Post-Questionnaire

• Age

• Gender

• What factors did you consider when rating the bonus payments?

• Would like to rate Turkers’ work for other tasks? Why or why not?

• Would you like Turkers to rate your work? Why or why not?

• Any other feedback:

A.3 Experiment 1 and 2: Cooperative Games

Note that both of these experiments used the same interface: the only differences between
the experiments were the games. Thus, we used the same tutorial and post-questionnaire
for both experiments.
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A.3.1 Tutorial

• In this experiment, you will be presented with a number of fictional scenarios where
several people must decide how to divide a reward. In each of the scenarios, three
people named Alice, Bob, and Charlie are playing a game together.

• We will show you information about how much reward every possible group of players
could earn by working as a team. These rewards will be different in each scenario.

– How many gold pieces would Bob earn alone?

– How many gold pieces would Alice and Charlie earn by working together?

– How many gold pieces would all three players earn by working as a team?

• Then, we will ask how you would split the team’s reward if all three players worked
together. You can chose your answer by dragging the sliders or clicking the buttons
below.

• To continue, submit the following answer: 16 gold pieces for Alice, 20 for Bob, and
24 for Charlie. Thank you for participating!

A.3.2 Post-Questionnaire

• Age

• Gender

• What factors did you consider when splitting the rewards?

• Which was more important: the rewards the players could earn alone, or in pairs?
Why?

• Do you think other participants would split the rewards differently? Why or why
not?

• Any other comments or feedback:
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