The Effects of Single-Player Coalitions on Reward Divisions in Cooperative Games

University of Waterloo
May 2019

This Talk

Research question: how do people pick fair reward divisions when acting as impartial decision makers?

Explore how values of single-player coalitions affect these divisions

Show that rewards are often unrelated to Shapley value: people break null player and additivity axioms

Cooperative Games

A transferable utility game describes how a group of players can earn rewards by working together in coalitions

Players	Reward
(nobody)	0
Alice	30
Bob	10
Charlie	0
Alice, Bob	60
Alice, Charlie	30
Bob, Charlie	10
Alice, Bob, Charlie	60

How to fairly divide the reward among them?

The Shapley Value

Shapley value [Shapley 1953]:

- Consider all possible orders of players joining the group
- Give players their average marginal contribution over these orders

The Shapley Value

Shapley value [Shapley 1953]:

- Consider all possible orders of players joining the group
- Give players their average marginal contribution over these orders

Unique reward division satisfying 4 fairness axioms

1. Efficiency: all of the grand coalition's reward is allocated

The Shapley Value

Shapley value [Shapley 1953]:

- Consider all possible orders of players joining the group
- Give players their average marginal contribution over these orders

Unique reward division satisfying 4 fairness axioms

1. Efficiency: all of the grand coalition's reward is allocated
2. Symmetry: players with same marginal contributions to all coalitions get same reward

The Shapley Value

Shapley value [Shapley 1953]:

- Consider all possible orders of players joining the group
- Give players their average marginal contribution over these orders

Unique reward division satisfying 4 fairness axioms

1. Efficiency: all of the grand coalition's reward is allocated
2. Symmetry: players with same marginal contributions to all coalitions get same reward
3. Null Players: players with no marginal contribution to any coalition get no reward

The Shapley Value

Shapley value [Shapley 1953]:

- Consider all possible orders of players joining the group
- Give players their average marginal contribution over these orders

Unique reward division satisfying 4 fairness axioms

1. Efficiency: all of the grand coalition's reward is allocated
2. Symmetry: players with same marginal contributions to all coalitions get same reward
3. Null Players: players with no marginal contribution to any coalition get no reward
4. Additivity: for all games f and $g, \operatorname{Sh}(f+g)=\operatorname{Sh}(f)+\operatorname{Sh}(g)$

Alternative Values

Are these axioms fair?

Alternative values:

- Solidarity value [Nowak and Radzik 1994]
- Egalitarian Shapley values [Joosten 1996, Casajus and Huettner 2013]
- Procedural values [Malawski 2013, Radzik and Driessen 2013]

All three weaken null player axiom

Empirical Studies

Prior work: empirical studies of cooperative games
Most focus on bargaining [Kalisch et al. 1954, Kahan and Rapoport 1984, Maschler 1992]
Impartial decisions about reward divisions [De Clippel et al. 2013]

- Rewards are convex combinations of equal split and Shapley value
- Rewards satisfy efficiency, symmetry, and additivity, but not null player
- Limitation: only studies zero-normalized games

Experiments

Question: How do single-player coalitions affect people's impartial reward divisions?
Answer this question through two experiments

- Experiment 1: Do people put more weight on 1- or 2-player coalitions' values?
- Experiment 2: How do people reason about 1-player coalitions?

Experiment Interface

Experiment: divide rewards in fictional scenario

Players	Gold Pieces
(nobody)	0
Alice	30
Bob	20
Charlie	10
Alice, Bob	50
Alice, Charlie	40
Bob, Charlie	30
Alice, Bob, Charlie	60

All three of them go on the quest together and earn $\mathbf{6 0}$ gold pieces as a group.
How should they divide the gold?

Procedure

Within-subjects experiments

- Participants selected rewards for 11 or 17 games
- Hired 100 workers from Mechanical Turk for each experiment

Filtered out low-quality workers

- Spending under 5 seconds on any screen
- Submitting blatantly non-sensical answers

Experiment 1

Experiment 1: designed games to emphasize values of 1- or 2-player coalitions

	Game								Shapley value		
Condition	\emptyset	1	2	3	12	13	23	123	1	2	3

Experiment 1

Experiment 1: designed games to emphasize values of 1- or 2-player coalitions

- Choose target Shapley value

Condition	Game								Shapley value		
	\emptyset	1	2	3	12	13	23	123	1	2	3
									25	25	10

Experiment 1

Experiment 1: designed games to emphasize values of 1- or 2-player coalitions

- Choose target Shapley value
- Design game where only 1-player values differ

Condition	Game								Shapley value		
	\emptyset	1	2	3	12	13	23	123	1	2	3
Solo	0	40	40	10	60	60	60	60	25	25	10

Experiment 1

Experiment 1: designed games to emphasize values of 1- or 2-player coalitions

- Choose target Shapley value
- Design game where only 1-player values differ
- Design game where only 2-player values differ

Condition	Game								Shapley value		
	\emptyset	1	2	3	12	13	23	123	1	2	3
Solo	0	40	40	10	60	60	60	60	25	25	10
Pair	0	0	0	0	45	15	15	60			

Experiment 1

Shapley value $=[25,25,10](1$-Worse $)$

Experiment 1

Shapley value $=[30,15,15]$ (1-BETTER)

Experiment 1

Shapley value $=[30,20,10]($ Distinct $)$

Experiment 2

Experiment 1: 1-player coalition values have larger effect on people's reward divisions
Goal of Experiment 2: understand how people reason about these values

Focus on three features:

- 1-player values not a multiple of the Shapley value
- Varying sum of 1-player values
- Games with null players

Experiment 2

Shapley value $=[25,25,10]$, with 1 -player values $[20,5,5]$:

Game								Shapley value		
\emptyset	1	2	3	12	13	23	123	1	2	3
0	20	5	5	60	30	45	60	25	25	10

Experiment 2

Shapley value $=[25,25,10]$, with 1 -player values summing to 30,45 , or 60 :

Sum	Game								Shapley value		
	\emptyset	1	2	3	12	13	23	123	1	2	3
30	0	20	5	5	60	30	45	60	25	25	10
45		25	10	10							
60		30	15	15							

Experiment 2

Shapley value $=[40,20,0]$, with player 3 null

Testing Axioms

Experiment 2: reward divisions are quite consistent, but unrelated to the Shapley value
Which axioms did people violate?

- Efficiency was required by experiment interface
- Use statistical tests to check symmetry, null player, and additivity

Testing Axioms: Symmetry

To satisfy symmetry, must give equal rewards to symmetric players

- Experiment 1 games had symmetric players
- Most people gave equal rewards - no significant differences

Symmetry:

Testing Axioms: Null Player

To satisfy null player axiom, must give no reward to null players

- 4 games in Experiment 2 with null players
- Best case: 14 of 74 participants gave 0 reward

Null player: X

- Consistent with De Clippel [De Clippel et al. 2013]

Testing Axioms: Additivity

To test additivity, need to know relationship between two games
Games from Experiment 2:

	Game								Shapley value			
Condition	\emptyset	1	2	3	12	13	23	123		1	2	3

\qquad
\qquad

Testing Axioms: Additivity

To test additivity, need to know relationship between two games
Games from Experiment 2:

Condition	Game								Shapley value		
	\emptyset	1	2	3	12	13	23	123	1	2	3
f	0	20	5	5	60	30	45	60	25	25	10

\qquad

Testing Axioms: Additivity

To test additivity, need to know relationship between two games
Games from Experiment 2:

Condition	Game								Shapley value		
	,	1	2	3	12	13	23	123	1	2	3
f	0	20	5	5	60	30	45	60	25	25	10
g		25	10	10							

\qquad

Testing Axioms: Additivity

To test additivity, need to know relationship between two games
Games from Experiment 2:

Condition	Game								Shapley value		
	\emptyset	1	2	3	12	13	23	123	1	2	3
f	0	20	5	5	60	30	45	60	25	25	10
g		25	10	10							
$g-f$	0	5	5	5	0	0	0	0			

Testing Axioms: Additivity

To test additivity, need to know relationship between two games

Games from Experiment 2:

Condition	Game								Shapley value		
	\emptyset	1	2	3	12	13	23	123	1	2	3
f	0	20	5	5	60	30	45	60	25	25	10
g		25	10	10							
$g-f$	0	5	5	5	0	0	0	0	0	0	0

Testing Axioms: Additivity

To test additivity, need to know relationship between two games
Games from Experiment 2:

Condition	Game								Shapley value		
	\emptyset	1	2	3	12	13	23	123	1	2	3
f	0	20	5	5	60	30	45	60	25	25	10
g		25	10	10							
$g-f$	0	5	5	5	0	0	0	0	0	0	0

To satisfy additivity, must give same rewards for these games

Testing Axioms: Additivity

Found that people gave inconsistent rewards to players 1 and 3

- Significant in 1-Worse games ($p<0.01$)
- Marginally significant in 1-Better games ($p=0.07$ and $p=0.08$)

Additivity: X

- Conflicts with [De Clippel et al. 2013]

Describing Human Reward Divisions

Models for people's reward divisions?

- Had little success fitting procedural values
- Heuristics similar to equal division payoff bounds [Selten 1987]
- Shapley value after applying non-linear utility function to coalition values
- Shapley value with weaker additivity axiom
- Stability concerns

The Effects of Single-Player Coalitions on Reward Divisions in Cooperative Games

University of Waterloo
May 2019

