The Effects of Single-Player Coalitions on Reward Divisions in Cooperative Games

Greg d'Eon, Kate Larson, Edith Law

University of Waterloo

May 2019

This Talk

Research question: how do people pick fair reward divisions when acting as impartial decision makers?

Explore how values of single-player coalitions affect these divisions

Show that rewards are often unrelated to Shapley value: people break null player and additivity axioms

Cooperative Games

A *transferable utility game* describes how a group of players can earn rewards by working together in coalitions

Players	Reward
(nobody)	0
Alice	30
Bob	10
Charlie	0
Alice, Bob	60
Alice, Charlie	30
Bob, Charlie	10
Alice, Bob, Charlie	60

How to fairly divide the reward among them?

Shapley value [Shapley 1953]:

- Consider all possible orders of players joining the group
- ▶ Give players their average marginal contribution over these orders

Shapley value [Shapley 1953]:

- Consider all possible orders of players joining the group
- ► Give players their average marginal contribution over these orders

Unique reward division satisfying 4 fairness axioms

1. **Efficiency**: all of the grand coalition's reward is allocated

Shapley value [Shapley 1953]:

- Consider all possible orders of players joining the group
- Give players their average marginal contribution over these orders

Unique reward division satisfying 4 fairness axioms

- 1. **Efficiency**: all of the grand coalition's reward is allocated
- 2. **Symmetry**: players with *same marginal contributions* to all coalitions get same reward

Shapley value [Shapley 1953]:

- Consider all possible orders of players joining the group
- Give players their average marginal contribution over these orders

Unique reward division satisfying 4 fairness axioms

- 1. **Efficiency**: all of the grand coalition's reward is allocated
- Symmetry: players with same marginal contributions to all coalitions get same reward
- 3. Null Players: players with no marginal contribution to any coalition get no reward

Shapley value [Shapley 1953]:

- Consider all possible orders of players joining the group
- Give players their average marginal contribution over these orders

Unique reward division satisfying 4 fairness axioms

- 1. **Efficiency**: all of the grand coalition's reward is allocated
- Symmetry: players with same marginal contributions to all coalitions get same reward
- 3. Null Players: players with no marginal contribution to any coalition get no reward
- 4. **Additivity**: for all games f and g, Sh(f+g)=Sh(f)+Sh(g)

Alternative Values

Are these axioms fair?

Alternative values:

- ► Solidarity value [Nowak and Radzik 1994]
- Egalitarian Shapley values [Joosten 1996, Casajus and Huettner 2013]
- ▶ Procedural values [Malawski 2013, Radzik and Driessen 2013]

All three weaken null player axiom

Empirical Studies

Prior work: empirical studies of cooperative games

Most focus on bargaining [Kalisch et al. 1954, Kahan and Rapoport 1984, Maschler 1992]

Impartial decisions about reward divisions [De Clippel et al. 2013]

- Rewards are convex combinations of equal split and Shapley value
- Rewards satisfy efficiency, symmetry, and additivity, but not null player
- Limitation: only studies zero-normalized games

Question: How do single-player coalitions affect people's impartial reward divisions?

Answer this question through two experiments

- **Experiment 1:** Do people put more weight on 1- or 2-player coalitions' values?
- **Experiment 2:** How do people reason about 1-player coalitions?

Experiment Interface

Experiment: divide rewards in fictional scenario

Players	Gold Pieces
(nobody)	0
Alice	30
Bob	20
Charlie	10
Alice, Bob	50
Alice, Charlie	40
Bob, Charlie	30
Alice, Bob, Charlie	60

All three of them go on the quest together and earn 60 gold pieces as a group.

How should they divide the gold?

SUBMIT

Procedure

Within-subjects experiments

- ▶ Participants selected rewards for 11 or 17 games
- ▶ Hired 100 workers from Mechanical Turk for each experiment

Filtered out low-quality workers

- ▶ Spending under 5 seconds on any screen
- Submitting blatantly non-sensical answers

Experiment 1: designed games to emphasize values of 1- or 2-player coalitions

				G	ame				Shap	oley v	alue
Condition	Ø	1	2	3	12	13	23	123	1	2	3

Experiment 1: designed games to emphasize values of 1- or 2-player coalitions

► Choose target Shapley value

					Shap	ley v	alue				
Condition	Ø	1	2	3	12	13	23	123	1	2	3
									25	25	10

Experiment 1: designed games to emphasize values of 1- or 2-player coalitions

- ► Choose target Shapley value
- ▶ Design game where only 1-player values differ

				G		Shap	ley v	alue			
Condition	Ø	1	2	3	12	13	23	123	1	2	3
Solo	0	40	40	10	60	60	60	60	25	25	10

Experiment 1: designed games to emphasize values of 1- or 2-player coalitions

- ► Choose target Shapley value
- ▶ Design game where only 1-player values differ
- ▶ Design game where only 2-player values differ

				G	ame				Shap	ley v	alue
Condition	Ø	1	2	3	12	13	23	123	1	2	3
Solo	0	40	40	10	60	60	60	60	25	25	10
Pair	0	0	0	0	45	15	15	60			

Shapley value = [25, 25, 10] (1-WORSE)

Shapley value = [30, 15, 15] (1-Better)

Shapley value = [30, 20, 10] (DISTINCT)

Experiment 1: 1-player coalition values have larger effect on people's reward divisions

Goal of Experiment 2: understand how people reason about these values

Focus on three features:

- ▶ 1-player values not a multiple of the Shapley value
- Varying sum of 1-player values
- Games with null players

Shapley value = [25, 25, 10], with 1-player values [20, 5, 5]:

		Sha	pley v	alue						
Ø	1	2	3	12	13	23	123	1	2	3
0	20	5	5	60	30	45	60	25	25	10

Shapley value = [25, 25, 10], with 1-player values summing to 30, 45, or 60:

				G	ame				Sha	pley v	alue
Sum	Ø	1	2	3	12	13	23	123	1	2	3
30	0	20	5	5	60	30	45	60	25	25	10
45		25	10	10							
60		30	15	15							

Shapley value = [40, 20, 0], with player 3 null

				(Same				Sha	pley v	alue
Sum	Ø	1	2	3	12	13	23	123	1	2	3
20	0	20	0	0	60	20	0	60	40	20	0
40	0	30	10	0	60	30	10	60			
50/ 60/ 0 10	2(30/	10/	50	30 2	1000		30 40 40 10	10/ 20/	50	10 30 20	10 0
	F	layer						Playe			

Testing Axioms

Experiment 2: reward divisions are quite consistent, but unrelated to the Shapley value

Which axioms did people violate?

- Efficiency was required by experiment interface
- Use statistical tests to check symmetry, null player, and additivity

Testing Axioms: Symmetry

To satisfy symmetry, must give equal rewards to symmetric players

- Experiment 1 games had symmetric players
- Most people gave equal rewards no significant differences

Symmetry:

✓

Testing Axioms: Null Player

To satisfy null player axiom, must give no reward to null players

- ▶ 4 games in Experiment 2 with null players
- ▶ Best case: 14 of 74 participants gave 0 reward

Null player: X

► Consistent with De Clippel [De Clippel et al. 2013]

To test additivity, need to know relationship between two games

				Shapley value							
Condition	Ø	1	2	3	12	13	23	123	1	2	3

To test additivity, need to know relationship between two games

					Sha	pley v	/alue				
Condition	Ø	1	2	3	12	13	23	123	1	2	3
f	0	20	5	5	60	30	45	60	25	25	10

To test additivity, need to know relationship between two games

					Sha	pley v	/alue				
Condition	Ø	1	2	3	12	13	23	123	1	2	3
f	0	20	5	5	60	30	45	60	25	25	10
g		25	10	10							

To test additivity, need to know relationship between two games

	Game								Shapley value		
Condition	Ø	1	2	3	12	13	23	123	1	2	3
f	0	20	5	5	60	30	45	60	25	25	10
g		25	10	10							
g-f	0	5	5	5	0	0	0	0			

To test additivity, need to know relationship between two games

	Game								Shapley value		
Condition	Ø	1	2	3	12	13	23	123	1	2	3
f	0	20	5	5	60	30	45	60	25	25	10
g		25	10	10							
g-f	0	5	5	5	0	0	0	0	0	0	0

To test additivity, need to know relationship between two games

Games from Experiment 2:

	Game								Shapley value		
Condition	Ø	1	2	3	12	13	23	123	1	2	3
f	0	20	5	5	60	30	45	60	25	25	10
g		25	10	10							
g-f	0	5	5	5	0	0	0	0	0	0	0

To satisfy additivity, must give same rewards for these games

Found that people gave inconsistent rewards to players 1 and 3

- ▶ Significant in 1-WORSE games (p < 0.01)
- ▶ Marginally significant in 1-Better games (p = 0.07 and p = 0.08)

Additivity: X

► Conflicts with [De Clippel et al. 2013]

Describing Human Reward Divisions

Models for people's reward divisions?

- ► Had little success fitting procedural values
- ► Heuristics similar to equal division payoff bounds [Selten 1987]
- ► Shapley value after applying non-linear utility function to coalition values
- Shapley value with weaker additivity axiom
- Stability concerns

The Effects of Single-Player Coalitions on Reward Divisions in Cooperative Games

Greg d'Eon, Kate Larson, Edith Law

University of Waterloo

May 2019