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Abstract. Cooperative game theory is a useful theoretical tool for de-
scribing reward divisions in cooperative scenarios. However, empirical
work on transferable utility games has focused on the class of zero-
normalized games, where players cannot earn any reward without form-
ing a coalition. In this paper, we study how humans divide rewards when
acting as impartial decision makers in cooperative games. We construct
games that systematically vary the values of the single-player coalitions,
and we use crowdsourced experiments to find how they impact people’s
reward divisions. Our results show that increasing the individual play-
ers’ values has a significant impact on people’s reward divisions, moving
them in directions that are sometimes unrelated to the Shapley value.
These reward divisions do not always satisfy the null-player or additiv-
ity axioms. Based on our results, we propose and evaluate descriptive
models for human reward divisions.

Keywords: Cooperative game theory · Shapley value · Behavioural
game theory.

1 Introduction

Cooperative game theory studies coalitional games, where a group of players can
form coalitions, and the game describes how much reward every possible coalition
could earn. One of the main questions in this field is: after the players have formed
a coalition, how should the reward be divided among them? The most well-known
division method is the Shapley value [15], which is the unique division that
satisfies four fairness axioms of efficiency, symmetry, null players, and additivity.
This value also has a simple interpretation: the amount of reward that each player
receives is the average amount of value that they bring to the group. Alternative
solution concepts [4, 8, 11–13] have also proposed modifications to these axioms
that attempt to capture social or psychological aspects of cooperation.

Empirical studies in this field have focused on understanding how humans
think about these games. The majority of this work has emphasized the bargain-
ing process, developing detailed models that describe how humans form coali-
tions and make counter-offers in these games. Little research has examined how
humans divide rewards in these games when they are impartial to the outcome.
The most relevant work is [3], who studied the rewards that impartial “decision
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makers” gave to “recipients”. Their results showed that people tended to select
convex combinations of equal splits and the Shapley values, which only break
the null player axiom. However, [3] only used zero-normalized games, where in-
dividual players cannot earn any rewards without forming coalitions.

In this paper, we investigate how humans select reward divisions in coop-
erative games. In particular, we focus on understanding whether humans place
more importance on the values of the 1- or 2-player coalitions in 3 player games.
To do this, we experiment with two sets of games where we fix the Shapley val-
ues and vary the marginal contributions in the 1- and 2-player coalitions. In the
first experiment, we control the sizes of these marginal contributions, creating
games where the rank-ordering of the players is implied by the solo coalitions,
the pair coalitions, or both. In the second experiment, we take this idea further
by constructing games where the solo and pair values imply different orderings
of the players. Our results show that the 1-player coalitions’ values have a larger
impact on people’s selected rewards than the 2-player coalitions. We use our data
to identify conditions where people emphasize the individual values, test whether
their divisions adhere to Shapley’s axioms, and propose descriptive models for
these rewards by evaluating existing solution concepts from the literature.

1.1 Related Work

The earliest study of human behaviour in cooperative games is [7], where 4 to 7
participants bargained face-to-face. This work found that players tended to split
their rewards equally, and powerful players rarely took full advantage of their
position. However, the main focus was on the bargaining process, such as the
speed of the negotiations and the resulting coalition structures.

Most of the experimental work following [7] is characterized by two features.
First, it places an emphasis on the bargaining procedure, with participants dis-
cussing coalitions and reward divisions while acting as players in the games.
Second, it focuses on zero-normalized games, where players cannot earn any
reward without forming a coalition. We refer to [6] and [9] for comprehensive
surveys of this work. More recent studies have continued to focus on bargaining
with more restrictive protocols [1, 10] or with computer agents [16].

One experiment [5] is notable for using non-zero-normalized games; they
found that the Shapley value is a good fit when all 3 players form a coalition.
However, their analysis also includes situations where only two players formed
a coalition, making it difficult to evaluate the accuracy of the Shapley values.

[3] is the most relevant experiment to our work. In their experiment, three
“recipients” earned baskets of items by answering trivia questions. These items
increased in value when combined with other recipients’ baskets (for example,
making a pair of shoes). Then, impartial “decision makers” chose how to divide
rewards between the recipients based on their baskets’ values. They concluded
that humans select convex combinations of the equal split and the Shapley value.
To our knowledge, their work is the first where the participants dividing the re-
wards are impartial to the divisions. However, their games were zero-normalized,
as the recipients’ baskets were worthless alone.
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2 Values for Cooperative Games

We begin by describing cooperative game theory concepts that we use to moti-
vate our experiments.

2.1 Cooperative Games

A transferable utility game G = (N, f) consists of a set of playersN = {1, 2, . . . , n}
and a characteristic function f : 2N → R. This characteristic function assigns a
reward f(C) to each coalition C ⊆ N ; we add the requirement f(∅) = 0. In this
paper, we restrict our attention to transferable utility games with n = 3 players,
so we often refer to the characteristic function f as a “game”. Also, we often
write the set {i} as i and the set {i, j} as ij – for example, C ∪ i means C ∪{i}.

A player i’s marginal contribution to a coalition C ⊆ N \ i is mc(i, f, C) =
f(C ∪ i) − f(C). Each marginal contribution is the amount of reward that the
player brings by joining a coalition. Players i and j are symmetric if mc(i, f, C) =
mc(j, f, C) for all C ⊆ N \ij, and player i is a null player if mc(i, f, C) = 0 for all
C ⊆ N \ i. A game is monotonic if all marginal contributions are non-negative.

2.2 Values

A value is a function v : R2N → RN that assigns a reward vi(f) to each of the
players i in the game f . We will focus on efficient values, where

∑
i vi(f) = f(N)

– all of the reward is allocated. Perhaps the simplest value is the equal division
value ED(f), where each player receives an equal fraction of the total:

EDi(f) =
f(N)

n
.

The most celebrated value is the Shapley value [15], which is the unique value
Sh(f) that satisfies four axioms:

– Symmetry : if players i and j are symmetric in f , then Shi(f) = Shj(f).
– Efficiency : the players’ rewards sum to f(N):

∑
i Shi(f) = f(N).

– Null players: if player i is a null player in f , then Shi(f) = 0.
– Additivity : if f and g are two games, define a new game (f + g)(C) =
f(C) + g(C) for all coalitions C. Then, Shi(f + g) = Shi(f) + Shi(g).

This value can be computed by rewarding each player the amount of value they
bring to a coalition, averaged over all possible orders of building the coalitions:

Shi(f) =
∑

C⊆N\i

|C|!(n− |C| − 1)!

n!
mc(i, f, C).

A number of modifications to the Shapley values have been proposed. One
is the family of egalitarian Shapley values [2,4], which is the set of convex com-
binations of the equal division and Shapley values

Shα(f) = αSh(f) + (1− α)ED(f).
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The parameter α is a measurement of equality: α = 0 gives an equal division,
while α = 1 gives the Shapley value. Another is the solidarity value [11]

Soli(f) =
∑
C3i

(n− |C|)!(|C| − 1)!

n!
Af (C)

where Af (C) = 1
|C|
∑
i∈C mc(i, f, C) is the average marginal contribution of any

player to C. Nowak suggests that the solidarity value captures some subjective
psychological aspects, while the Shapley value is the “pure economic” solution.

2.3 Procedural Values

The family of procedural values [8,13] generalizes the egalitarian Shapley values.
A procedural value P s(f) is parameterized by a tuple s = (s1, s2, . . . , sn−1). Each
term in this tuple is a measure of equality: when a player joins a coalition of size
k, they keep a fraction sk of their marginal contribution, splitting the remaining
fraction (1 − sk) equally among the other players. To simplify calculations, we
denote s0 = sn = 1. These procedural values are

P s(f) =
∑

C⊆N\i

|C|!(n− |C| − 1)!

n!

[
s|C|+1f(C ∪ i)− s|C|f(C)

]
.

To help understand the effects of varying the s parameters, we describe a
method for decomposing a value into several components. First, we define the
games fk for 1 ≤ k ≤ n as

fk(C) =

{
f(C), |C| = k,

0, |C| 6= k.

Then, we define dk(f) = Sh(fk). Each of these dk vectors represents the dif-
ferences between the players’ marginal contributions in the coalitions of size k.
Note that dn(f) = ED(f), and for k < n,

∑
i d
k
i = 0 – adding dk to a value

preserves efficiency. For example, consider the game f(∅) = f(2) = f(3) = 0,
f(1) = f(13) = 30, and f(12) = f(23) = f(123) = 60. This game has d1(f) =
[10,−5,−5], d2(f) = [−5, 10,−5], and d3 = ED(f) = [20, 20, 20]. This decompo-
sition allows the procedural values for any game to be written as a vector sum;
for a 3-player game,

P s(f) = ED(f) + s1d
1(f) + s2d

2(f).

We also overload notation and write dSh(f) = Sh(f)−ED(f) so the egalitarian
Shapley values are

Shα(f) = ED(f) + α dSh(f).

We use procedural values to design our games and interpret our results in
this paper for two reasons. First, the family of procedural values includes all of
the values described previously: ED(f) has sk = 0, Sh(f) has sk = 1, Shα(f)
has sk = α, and Sol(f) has sk = 1

k+1 . Second, [3] found the egalitarian Shapley
values to be a good model for their results; procedural values are a natural way
to generalize this idea to non-zero-normalized games.



Single-Player Coalitions in Cooperative Games 5

3 Method

3.1 Games

For our experiments, we constructed games with identical Shapley values where
we divided the players’ contributions between the d1 and d2 vectors in different
ways. First, we chose Shapley values that represent different rank-orderings of
the players. We refer to these Shapley values as 1-Worse (Sh = [25, 25, 10]),
1-Better (Sh = [30, 15, 15]), Distinct (Sh = [30, 20, 10]), and 1-Null (Sh =
[40, 20, 0]). Then, we chose d1 and d2 vectors in two different ways.

Experiment 1: For the 1-Worse, 1-Better, and Distinct Shapley val-
ues, we created 3 games by placing the players’ marginal contributions in the
Solo values or the Pair values, or splitting them between Both coalition sizes.
These games have

Solo: d1(f) = dSh(f); d2(f) = 0

Both: d1(f) = d2(f) =
dSh(f)

2

Pair: d1(f) = 0; d2(f) = dSh(f)

After fixing d1 and d2, the average values of the solo and pair coalitions are still
unconstrained; we arbitrarily set them to make the games monotonic. We also
added a purely additive game with Sh = [10, 20, 30] and a symmetric game with
Sh = [20, 20, 20]. These 11 games are listed in Table 1.

Experiment 2: For the 1-Worse and 1-Better Shapley values, we se-
lected d1 vectors that do not point towards these values. For 1-Worse, we used
vectors of the form

d11-Worse = [2x,−x,−x]

and for 1-Better, we used vectors of the form

d11-Better = [x, x,−2x].

For each Shapley value, we selected 6 games using these vectors. In 3 of these
games (Zeros2, Zeros5, and Zeros10), we gave values of 0 to some of the
players and values of 2, 5, or 10 to the others. In the other 3 games (Sum30,
Sum45, and Sum60), we chose values that summed to 30, 45, or 60.

We also selected four games with 1-Null Shapley values. In these games, we
gave player 2 a reward of 0 (1-Null-Zeros) or had the individual rewards sum
to 40, 50, or 60 (1-Null-Sum40, 1-Null-Sum50, and 1-Null-Sum60)). We
also included the Symmetric game again. All 17 games are listed in Table 2.

3.2 Experiment

Participants: We hired participants from Mechanical Turk. For experiment
1, we posted human intelligence tasks (HITs) with the title “Divide rewards in
fictional scenarios (10 mins)” with a payment of $1.25 USD. For experiment 2, we
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Fig. 1. The task interface. Participants were presented with a tabular representation of
the game and asked to divide the total reward between the three players. The “submit”
button was only enabled when the entire reward was allocated.

changed these values to 15 minutes and $1.75 USD. We required workers to have
at least 1000 approved HITs with a 95% or higher approval rate. We restricted
the HIT to workers located in the United States, and we used Mechanical Turk’s
qualification system to ensure that workers could only accept the HIT once.

Task: During the experiment, participants were presented with a series of
scenarios about three fictional characters – Alice, Bob, and Charlie – playing
a video game online. Each of these scenarios was associated with a cooperative
game, which describes how many gold pieces every coalition could earn by work-
ing together. We displayed this information in a colour-coded table, which listed
every combination of players and the amount of gold that the group could earn.
Then, we told workers that the three characters all chose to work together, and
we asked how the gold should be divided. Workers entered their responses by
adjusting three sliders and clicking the submit button. The interface disabled the
submit button as long as there was a surplus, only allowing efficient responses
to be submitted. The experiment interface is shown in Figure 1.

Procedure: After workers accepted the HIT, they filled out a consent form
and completed a brief tutorial. In this tutorial, we described the interface and
asked comprehension questions about the reward displays. Then, workers com-
pleted several rounds of the task, with each round corresponding to one of the
games above. We randomized the order of the games. We also randomly labelled
players 1, 2, and 3 as Alice, Bob, and Charlie in each game. Finally, workers
received a confirmation code and submitted the HIT.
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4 Results

In both experiments, a total of 100 workers completed the HIT. A number of
workers submitted low-quality answers (for example, [30, 30, 0] in the Symmet-
ric game). To remove these workers, we filtered out 21 workers that spent less
than 5 seconds on any scenario. We also removed workers that repeatedly sub-
mitted nonsensical answers, such as [1, 1, 58] in Distinct-Both. This filtering
process left us with 75 workers in experiment 1 and 74 workers in experiment
2. We confirmed that this criteria was appropriate by checking the Symmetric
games: after filtering, the most extreme reward in this game was [20, 22, 18].

4.1 Experiment 1

The rewards that each participant submitted for each game are plotted in Fig-
ure 2. Each of these plots shows the distribution of selected rewards, along with
the equal division (red) and the Shapley value (blue). There are several key
features to note about these plots.

First, in all games, most rewards are close to the line between the equal
division and the Shapley value. On this line, there are a few key points where
most rewards land. The most common is the equal division, which was picked by
at least 25 of the 75 participants in each game. The Shapley value also appears
frequently. Other common points include rewards half or double the distance
from the equal division to the Shapley value.

Second, the main difference between the games is the distance from each of
the rewards to the equal division. For all three Shapley values, the Solo games
have the most extreme rewards, while the Both and Pair divisions are generally
more equal. For instance, in 1-Better-Solo, 14 participants submitted rewards
close to [40, 10, 10]; in 1-Better-Both, only 3 such rewards remained.

We confirmed this trend using non-parametric statistical tests. For each divi-
sion, we calculated the L1 distance to the equal division, and we compared these
distances using Holm-Bonferroni-corrected Wilcoxon signed-rank tests. For all
three Shapley values, we found a significant difference between the Solo and
Pair games (p < 0.001) and between the the Both and Pair games (p < 0.01).
We also found a significant difference between the 1-Better-Solo and 1-
Better-Both games (p < 0.001). These results confirm that people gave more
equal divisions in the Pair games and more unequal rewards in the Solo games.

4.2 Experiment 2

Each participant submitted a reward division for all 17 games. We split this data
across two figures. Figure 4 shows the rewards for the 1-Worse and 1-Better
games; Figure 3 has the 1-Null games.

These rewards show striking differences from the data in Experiment 1. First,
the majority of the rewards that participants selected are not affine combinations
of equal divisions and the Shapley values. Further, in the 1-Worse and 1-
Better games, the Shapley values are quite uncommon. In fact, in four of the
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Fig. 2. The rewards that participants submitted for each game in Experiment 1. On
each plot, ED(f) is circled in dark red, and Sh(f) is circled in light blue.
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Fig. 3. The rewards that participants submitted for the 1-Null games in experiment
2. In each plot, ED(f) is circled in dark red, and Sh(f) is circled in light blue. Green
lines indicate the direction of the main PCA component.

1-Better games, no participants chose the Shapley values. However, there is
still a clear linear pattern to the rewards in most games. In the 1-Worse games,
most of the rewards lie between the equal division and the value [60, 0, 0]; in the
1-Better games, they lie between the equal division and [30, 30, 0]. The 1-
Null-Zeros game appears to be similar to the 1-Worse games, with many
of the responses giving a disproportionately high amount of reward to player 1.
Lastly, the other 1-Null games have more rewards close to the Shapley values.

We described these trends using principal component analysis (PCA). For
each game, we computed the main principal component of the rewards. These
components are plotted as green lines in Figures 3 and 4. Due to the high number
of participants selecting equal splits in all games, we plotted these components
as passing through the equal division. These components are highly consistent,
with nearly identical directions in each 1-Worse game and in each 1-Better
game. They also show the differences between the 1-Null games, where the
components steadily shift from the extreme value in 1-Null-Zeros towards the
set of egalitarian Shapley values in 1-Null-Sum50 and 1-Null-Sum60.

To make a formal comparison between the data and the Shapley values, we
found bootstrapped 99% confidence intervals for the angles of each of these PCA
components (see Appendix B for details). Only three of these confidence intervals
– the three 1-Null-SumX games – contain dSh(f). However, almost all of them
contain the d1(f) vector; the only exception is 1-Better-Sum30, where it is
0.7◦ outside of the interval. This data strongly suggests that egalitarian Shapley
values are not a good model for human-selected rewards in these games.

5 Discussion

Our results suggest that the single-player coalitions in cooperative games play an
important role in people’s reward divisions. In this section, we provide additional
insights about these rewards, comparing our data against the Shapley value
axioms and the rewards predicted by procedural values.



10 d’Eon, Larson, and Law

1-Worse-Zeros2 1-Worse-Zeros5 1-Worse-Zeros10

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1
1-Worse-Sum30 1-Worse-Sum45 1-Worse-Sum60

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1

1-Better-Zeros2 1-Better-Zeros5 1-Better-Zeros10

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1
1-Better-Sum30 1-Better-Sum45 1-Better-Sum60

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1

0

10

20

30

40

50

60

60

50

40

30

20

10

0

0 10 20 30 40 50 60

Player 2Pla
ye

r 3

Player 1

Fig. 4. The rewards that participants submitted for each of the 1-Worse and 1-
Better games in Experiment 2. In each plot, ED(f) is circled in dark red, and Sh(f)
is circled in light blue. Green lines indicate the direction of the main PCA component.
In all 12 games, the PCA component is close to d1(f), but far from dSh(f).
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5.1 Shapley Value Axioms

In both of our experiments, we only allowed participants to submit efficient
rewards, but we made no restrictions related to the other three Shapley value
axioms. Did participants obey these axioms?

Symmetry: Six of the games in Experiment 1 have two symmetric players:
players 1 and 2 in the 1-Worse games, and players 2 and 3 in the 1-Better
games (Figure 2). We used paired Wilcoxon signed-rank tests to test whether
these symmetric players received different rewards. We found no significant dif-
ferences between these rewards in any of these six games (all p > 0.1). Thus, we
cannot reject the hypothesis that participants obey the symmetry axiom.

Null Players: In all four of the 1-Null games in Experiment 2, player 3 is
a null player. It is clear from Figure 3 that a majority of players give a positive
reward to player 3, breaking the null player axiom. In the best case (1-Null-
Sum60, only 14 of the 74 participants satisfied the null player axiom; in the
other games, this proportion is even smaller. However, in each game, 30 to 40
participants gave a reward of 10 or less to the null player. While participants
tend to recognize that null players contribute little to the group, they rarely go
so far as to assign no reward to these null players.

Additivity: Several games in Experiment 2 are closely related. For instance,
the 1-Worse-Sum30 and 1-Worse-Sum45 games only differ by the game

f(C) =

{
5, |C| = 1,

0, |C| 6= 1.

It is difficult to argue that any value other than [0, 0, 0] is reasonable for f :
f(N) = 0, and all three players are symmetric. Thus, to satisfy additivity, par-
ticipants must select the same rewards for all three of the 1-Worse-SumX
games and for all three of the 1-Better-SumX games.

We used 6 within-subjects Friedman tests to check for additivity violations.
(For instance, one test checked whether participants assigned the same rewards
to player 1 in the 1-Worse-Sum30, 1-Worse-Sum45, and 1-Worse-Sum60
games.) We found that the rewards for players 1 and 3 varied significantly in the
1-Worse games (both p < 0.01). We also found marginally significant results in
the 1-Better games, with inconsistent rewards assigned to player 1 (p = 0.08)
and player 3 (p = 0.07). These results imply that our data violates additivity.

5.2 Models for Human Rewards

Motivated by the concept of procedural values, we found that the values of the
solo coalitions have the largest impact on human-selected rewards. Can proce-
dural values accurately describe our participants’ rewards?

For each participant, we searched for parameters (s1, s2) such that the pre-
dicted values differed from their rewards by no more than a threshold t for any
player in every game. We tested all combinations of parameters s1 ∈ [−1, 2] and
s2 ∈ [−2, 2] in steps of 0.01 with thresholds of t = 2 and t = 5.
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We had little success fitting these procedural values to individual partici-
pants. In experiment 1, 25 participants submitted an equal division for every
game, so they could be described by s = (0, 0). However, few other participants
could be described by any procedural value: we could only find good fits for
1 and 19 participants with t = 2 and t = 5, respectively. The remaining 31
participants could not be described by any procedural values. We found similar
results in experiment 2. Here, 19 participants submitted equal divisions; other-
wise, procedural values only described 2 and 8 participants at t = 2 and t = 5
respectively. We conclude that procedural values are generally not suitable for
describing individual people’s reward divisions.

Surprisingly, though, we found that procedural values describe the population
averages for each game quite well. In experiment 1, we found a set of good s-
values at t = 2; in experiment 2, we also found good fits at t = 4. One set of
parameter values that fits both datasets is s = (0.65, 0.25). However, neither set
of parameters contains the egalitarian Shapley values or solidarity value.

There are several possible reasons why few participants can be described ac-
curately by procedural values. One potential reason for this is that people may
be performing a completely different type of calculation. People might be esti-
mating the relationships between the players’ power with quick, simple heuristics
that are unrelated to the Shapley values – similar to Selten’s equal division pay-
off bounds for bargaining [14]. Another possibility is that people are applying
a non-linear utility function u(x) to each of the game’s values, then computing
procedural values using the rewards u(f(C)) rather than f(C). Finally, people
might be concerned with stability, and their rewards could be affine combinations
of equal payments and core-like solution concepts. This theory is difficult to test,
as some of these games have multi-valued least-cores, but a focused experiment
could investigate this idea.

6 Conclusion

In this paper, we studied how humans divide rewards when acting as impartial
decision makers in cooperative games. Our results showed that the values of the
single-player coalitions in these games, which have typically been fixed at zero
in previous work, play an important role in people’s reward division decisions.
First, humans are more likely to select unequal reward divisions when the players
in the game can earn different rewards alone. Second, the values of these single-
player coalitions appear to take precedence over the two-player coalitions in many
situations. We also used our data to show that humans respect the symmetry
axiom, but not the null player or additivity axioms that are used to characterize
the Shapley value, and their rewards are not described well by existing values
in the literature. Our results serve as a starting point to research heuristics or
utility functions that capture people’s opinions in general cooperative games.
Future work can also investigate how our results extend to other Shapley values,
numbers of players, and representations of games.
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A Experiment Games

Characteristic function Sh(f)
Condition ∅ 1 2 3 12 13 23 123 1 2 3

1-Worse-Solo 0 40 40 10 60 60 60 60 25 25 10
1-Worse-Both 0 15 15 0 45 30 30 60
1-Worse-Pair 0 0 0 0 45 15 15 60

1-Better-Solo 0 40 10 10 60 60 60 60 30 15 15
1-Better-Both 0 15 0 0 45 45 30 60
1-Better-Pair 0 0 0 0 45 45 15 60

Distinct-Solo 0 40 20 0 60 60 60 60 30 20 10
Distinct-Both 0 20 10 0 60 50 40 60
Distinct-Pair 0 0 0 0 60 40 20 60

Symmetric 0 20 20 20 40 40 40 60 20 20 20

Additive 0 10 20 30 30 40 50 60 10 20 30

Table 1. The 11 games used in experiment 1 and their Shapley values.

Characteristic function Sh(f)
Condition ∅ 1 2 3 12 13 23 123 1 2 3

1-Worse-Zeros2 0 2 0 0 40 10 12 60 25 25 10
1-Worse-Zeros5 0 5 0 0 40 10 15 60

1-Worse-Zeros10 0 10 0 0 40 10 20 60
1-Worse-Sum30 0 20 5 5 60 30 45 60
1-Worse-Sum45 0 25 10 10 60 30 45 60
1-Worse-Sum60 0 30 15 15 60 30 45 60

1-Better-Zeros2 0 2 2 0 38 40 10 60 30 15 15
1-Better-Zeros5 0 5 5 0 35 40 10 60

1-Better-Zeros10 0 10 10 0 30 40 10 60
1-Better-Sum30 0 15 15 0 45 60 30 60
1-Better-Sum45 0 20 20 5 45 60 30 60
1-Better-Sum60 0 25 25 10 45 60 30 60

1-Null-Zeros 0 20 0 0 60 20 0 60 40 20 0
1-Null-Sum40 0 30 10 0 60 30 10 60
1-Null-Sum50 0 35 15 0 60 35 15 60
1-Null-Sum60 0 40 20 0 60 40 20 60

Symmetric 0 20 20 20 40 40 40 60 20 20 20

Table 2. The 17 games used in experiment 2 and their Shapley values.
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B PCA Confidence Intervals

We used PCA to find linear relationships between participants’ rewards in our
games. For our data, the main PCA component can be interpreted as a d vector:
each datapoint x in our dataset lies on the plane x1 + x2 + x3 = 60, so the
main component must be parallel to this plane. We note that PCA is sensitive
to outliers, but we apply it to our dataset because we manually removed most
of these outliers.

We used bootstrapping to find confidence intervals for the angles of the PCA
components. Specifically, to compute one bootstrapped estimate of the angle for
a game, we sampled 74 points with replacement from our Experiment 2 dataset
of 74 rewards. We calculated the main PCA component of this resampled data
and found the angle of this component as it would be visualized on a ternary
plot. We repeated this process 10000 times for each game to get a distribution of
the PCA angles, and we took the middle 99% of these angles as the confidence
interval. These intervals are shown in Figure 5.
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Fig. 5. Bootstrapped 99% confidence intervals for the angles of each of the PCA com-
ponents. For each game, the angle of the vector dSh(f) is indicated with a black point.
All but one (1-Better-Sum30) of the confidence intervals contain d1(f); only the
rightmost three intervals contain dSh(f).


